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Dynamical Systems

• A global continuous time dynamical system is a pair (𝑀,Φ), 
where 𝑀 is a topological space and Φ ∶ ℝ ×𝑀 ⟶ 𝑀 is a 

continuous map so that Φ 0, 𝑝 = 𝑝, and Φ 𝑠,Φ 𝑡, 𝑝 = Φ(𝑠

+ 𝑡, 𝑝) for all 𝑝 ∈ 𝑀 and all 𝑡, 𝑠 ∈ ℝ.

• 𝕋2 = ( Τℝ ℤ)2 and Φ 𝑡, 𝑎, 𝑏 = (𝑎 + 𝑡, 𝑏 + 𝛼𝑡). If 𝛼 is 

rational, then every orbit is periodic. Otherwise every orbit is 

dense in 𝕋2.

• A solution to an differential equation is a dynamical system, 

for instance:



Dynamical Systems

𝑥′ 𝑡 = 𝜎 ∙ 𝑦 − 𝑥

𝑦′ 𝑡 = 𝑥 ∙ 𝜌 − 𝑧 − 𝑦

𝑧′ 𝑡 = 𝑥𝑦 − 𝛽𝑧

• A subset 𝐴 ⊂ 𝑀 called attractor is especially important since 

it attracts the evolution of states in close proximity.

• 𝐴 is compact.

• 𝐴 is an invariant set, i.e. Φ(𝑡, 𝐴) ⊂ 𝐴 for 𝑡 ≥ 0.

• There is an invariant open neighborhood 𝑈 (called the basin of 

attraction) of 𝐴, so that:

∩𝑡≥0 Φ 𝑡, 𝑈 = 𝐴.



Dynamical Systems

• 𝕋2 is the attractor of itself if 𝛼 is irrational in the previous 

example.

• Lorenz’s butterfly attractor.



Dynamical Systems

• The shape of an attractor is crucial.

 Circle implies periodic process.

 Non-integral Hausdorff dimension implies chaos.

 High-dimensional tori 𝕋𝑛 implies quasiperiodicity.

• It is difficult to achieve this goal for some reasons.

 There is no precise description for the state space 𝑀.

 How to figure out the “shape”?



Taken’s Theorem

• Weather may be regarded as a dynamical system, but one can 

not give a precise description about it. Instead, one can easily 

obtain measurements of relevant quantities for each state 𝑝
∈ 𝑀, for instance temperature, pressure, etc. 

• A way of measuring can be thought of as a continuous map 

𝐹:𝑀 ⟶ ℝ called an observation function. For a given initial 

state 𝑝 ∈ 𝑀, one obtains the scalar time series

𝜑𝑝 : ℝ ⟶ ℝ,

𝑡 ↦ 𝐹 ∘ Φ 𝑡, 𝑝 .



Taken’s Theorem

• Let 𝑀 be a smooth, compact, Riemann manifold; let 𝜏 > 0 be 

a real number; and let 𝑑 ≥ 2dim(𝑀) be an integer. Then for 

generic Φ ∈ 𝐶2 ℝ×𝑀,𝑀 and 𝐹 ∈ 𝐶2(𝑀,ℝ), and for 𝜑𝑝(𝑡)

defined above, the delay map 𝜓 ∶ 𝑀 ⟶ ℝ𝑑+1

𝑝 ↦ (𝜑𝑝 0 ,𝜑𝑝 𝜏 , 𝜑𝑝 2𝜏 ,… , 𝜑𝑝 𝑑𝜏 )

is an embedding.

• Generic means that Φ,𝐹 are both open and dense in Whitney 

topology.



Sliding Window Embedding

• Let 𝑓 ∶ ℝ ⟶ ℝ be a function, 𝜏 > 0 a real number, and 𝑑 > 0
an integer. The sliding window embedding of 𝑓, with 

paremeters 𝑑 and 𝜏, is the vector valued function

𝑆𝑊𝑑,𝜏𝑓 ∶ ℝ ⟶ ℝ𝑑+1,

𝑡 ↦ 𝑓 𝑡 , 𝑓 𝑡 + 𝜏 , 𝑓 𝑡 + 2𝜏 ,… , 𝑓 𝑡 + 𝑑𝜏 .

• For 𝑇 ⊂ ℝ, the set 𝕊𝕎𝑑,𝜏𝑓 = 𝑆𝑊𝑑,𝜏𝑓 𝑡 : 𝑡 ∈ 𝑇 is the 

sliding window point cloud associated to the sampling set 𝑇.



Sliding Window Embedding

• Thus, given time series data 𝑓 𝑡 = 𝜑𝑝(𝑡) observed from a 

potentially unknown dynamical system (𝑀,Φ), Taken’s 

theorem implies that the sliding window point cloud 𝕊𝕎𝑑,𝜏𝑓

provides a topological copy of Φ 𝑡, 𝑝 : 𝑡 ∈ 𝑇 .

• Therefore, one successfully carries the orbit of a point 𝑝 ∈ 𝑀
homeomorphically to an Euclidean space!



Rips Complex

• For a finite set of points 𝒳 = 𝑥𝑖 , we can form a simplicial 

complex (abstract) called Rips complex ℛ𝛼(𝒳):

ℛ𝛼 𝒳 = 𝑥𝑖1 , ⋯ , 𝑥𝑖𝑘 ⊂ 𝒳 ∶ 𝑑 𝑥𝑖𝑝 , 𝑥𝑖𝑞 ≤ 𝛼, 0 ≤ 𝑝, 𝑞 ≤ 𝑘 .



Rips Complex

• Let 𝐻𝑛(ℛ𝛼 𝒳 ;𝔽) denote the n’th homology group (vector 

space) of Rips complex of 𝒳 with coefficients in filed 𝔽, 

usually 𝔽2. Let 𝛽𝑛(ℛ𝛼 𝒳 ;𝔽) denote the rank (dimension) of 

𝐻𝑛 ℛ𝛼 𝒳 ;𝔽 , called the n’th Betti number of ℛ𝛼 𝒳 . Betti 

number implies the number of n-dimensional holes in a given 

topological space.

• If 𝛼 ≤ 𝛼′, there is an inclusion 𝜄𝛼,𝛼
′

from ℛ𝛼 𝒳 to ℛ𝛼′ 𝒳 ,

𝜄𝛼,𝛼
′
𝑥𝑖1 ,⋯ 𝑥𝑖𝑘 = 𝑥𝑖1 ,⋯ 𝑥𝑖𝑘 ,

and induces a linear transformation:

𝜄𝑛
𝛼,𝛼′: 𝐻𝑛(ℛ𝛼 𝒳 ;𝔽) ⟶ 𝐻𝑛(ℛ𝛼′ 𝒳 ;𝔽).



Persistent Homology

• A persistence vector space 𝕍 is a collection of vector spaces 

𝑉𝛼, 𝛼 ∈ ℝ, and linear transformations 𝜄𝛼,𝛼
′
: 𝑉𝛼 ⟶ 𝑉𝛼′,𝛼 ≤ 𝛼′, 

so that:

1. 𝜄𝛼,𝛼 is the identity map of 𝑉𝛼 for all 𝛼.

2. 𝜄𝛼
′,𝛼′′ ∘ 𝜄𝛼,𝛼

′
= 𝜄𝛼,𝛼

′′
for all 𝛼 ≤ 𝛼′ ≤ 𝛼′′.

• If 𝛾 ∈ 𝑉𝛼 is a nonzero element, then define

𝑏𝑖𝑟𝑡ℎ 𝛾 = inf { ෤𝛼 ≤ 𝛼: 𝛾 ∈ Im(𝜄෥𝛼,𝛼)}

𝑑𝑒𝑎𝑡ℎ 𝛾 = sup {𝛼′ ≥ 𝛼: 𝛾 ∉ Ker(𝜄𝛼,𝛼
′
)}

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒 𝛾 = 𝑑𝑒𝑎𝑡ℎ 𝛾 − 𝑏𝑖𝑟𝑡ℎ(𝛾)



Persistent Homology

• We will use 𝑏𝑐𝑑𝑛
ℛ(𝒳; 𝔽) to denote the barcode for the n-

dimensional persistent homology of ℛ(𝒳).

Figure 1.[Perea, 2019] Barcode for the Rips filtration of 𝒳 ⊂ ℝ2 near 𝑆1. 



Persistent Homology

• Let 𝕍 be a persistence vector space so that dim(𝑉𝛼) is finite for 

all 𝛼. Then there exists a multiset of intervals I called the 

barcode of 𝕍, denoted 𝑏𝑐𝑑(𝕍), and so that:

1. For all 𝛼, dim(𝑉𝛼) is exactly the number of intervals 𝐼
∈ 𝑏𝑐𝑑(𝕍), counted with repetitions, with 𝛼 ∈ 𝐼.

2. For every 𝐼 ∈ 𝑏𝑐𝑑(𝕍), and 𝛼 ∈ 𝐼, there is 𝛾 ∈ 𝑉𝛼 with the left 

and right end-points of I are 𝑏𝑖𝑟𝑡ℎ(𝛾) and 𝑑𝑒𝑎𝑡ℎ(𝛾).

• 𝐻𝑛(ℛ𝛼 𝒳 ;𝔽) together with maps 𝜄𝑛
𝛼,𝛼′

is a persistence vector 

space, called the n-dimensional persistent homology, with 

coefficients in 𝔽, of the Rips filtration ℛ 𝒳 = ℛ𝛼(𝒳) 𝛼∈ℝ.



Persistent Homology

• Let 𝜔 = 3 be irrational. Consider the dynamics Φ and 

observation function 𝐹 on torus 𝕋2 = 𝑆1 × 𝑆1 ⊂ ℂ2, given by

Φ ∶ (𝑡, 𝑧1, 𝑧2 ) ⟶ (𝑒𝑖𝑡𝑧1, 𝑒
𝑖𝜔𝑡𝑧2)

𝐹 ∶ (𝑧1, 𝑧2) ⟶Re 𝑧1 + 𝑧2 .

Let 𝑝 = (1,1), 𝑑 = 4, 𝜏 =
3

4
3𝜋, 𝑛 = 0,1,2.



Persistent Homology

Figure 2.[Perea, 2019] 

Left: The orbit of point 𝑝. The colors, blue through red, indicate the time.

Center: The time series 𝑓 𝑡 = 𝐹 ∘ Φ 𝑡, 𝑝 = cos 𝑡 + cos 3𝑡.
Right: Barcodes for the Rips filtration ℛ(𝕊𝕎𝑑,𝜏𝑓), the number of long intervals 

recovers the Betti numbers of the orbit: 𝛽0 = 𝛽2 = 1; 𝛽1 = 2.



Application to Wheeze Detection

• For a scalar time series 𝑥𝑖 , a representation of the delay 

coordinate embedding can be described as the following vector 

quantity of m components:

𝑋𝑖 = (𝑥𝑖 , 𝑥𝑖+𝑗 , 𝑥𝑖+2𝑗 , … , 𝑥𝑖+ 𝑚−1 𝑗)

Where j is the index delay and m is the embedding dimension. 

If the sampling time is 𝑇𝑠, then the delay time 𝜏 is connected 

to the index delay j by the equality 𝜏 = 𝑗 ∙ 𝑇𝑠. We will use 𝑚
= 2 in the rest of our discussion.

• Discrete time sound signals can be considered as a series 

expressing the amplitude of the wave in volts at each time 

instance, i.e. 𝑥 𝑡𝑖 = 𝑥𝑖 , i=1,2,...k and 𝑡𝑖 = 𝑖 ∙ 𝑇𝑠.



Application to Wheeze Detection

• Taken’s theorem implies that this embedding carries the whole 

topological data.

• Thus for a given discrete time sound signal 𝑥(𝑡𝑖), we can 

embed it into ℝ2, then use the proposed persistent homology 

method to suggest the shape of the original signal.

• There are still something to be done, namely, selecting time 

delay and wheeze modeling.



Selecting Time Delay

• Examine an autocorrelation-like function(ACL) to choose a 

proper delay. The ACL function of a non-stationary digital 

signal 𝑥(𝑡𝑖) is calculated as follows:

𝑅𝑥𝑥 𝑡𝑖 = ෍

1≤𝑙≤𝑘

𝑥(𝑡𝑖) ∙ 𝑥(𝑡𝑙)

• According to experimental results, the appropriate interval for 

choosing delay time is 𝑡𝑐1 < 𝜏 < 𝑡𝑐2, where 𝑡𝑐1 and 𝑡𝑐2 are the 

first and second critical points of the ACL function 𝑅𝑥𝑥 𝑡𝑖 .



Selecting Time Delay

Figure 3.[Emrani Saba, 2014] The ACL function of a non-wheeze signal (left) and a 

wheeze signal (right).



3.2. Wheeze Modeling

• We propose a model for wheeze signals in time domain 
defined as a continuous piecewise sinusodal function with 
different periods and phases and a time varying amplitude, 
represented as 

𝜔 𝑡 =෍
𝑖=1

𝑛

𝑔𝑖(𝑡)

𝑔𝑖 𝑡 = ൞𝐴 𝑡 sin
2𝜋

𝑇𝑖
𝑡 + 𝜙𝑖 , 𝑡𝑖−1 ≤ 𝑡 ≤ 𝑡𝑖

0

• For each discrete wheeze signal denote by 𝑠(𝑡), we can 
construct such a  𝜔(𝑡).



3.2. Wheeze Modeling
• This model performs well on wheeze signals but not good on 

non-wheeze signals.

Figure 4.[Emrani Saba, 2014] Comparison of the proposed model for a non-

wheeze breathing sound signal (left) and a wheeze signal (right).



3.2. Wheeze Modeling

• Now we turn to embed 𝜔(𝑡) and apply our method. To be 

precise, the continuous time delay embedding of 𝜔(𝑡) and 

𝜔𝑖(𝑡) can be defined as: 

𝑊 𝑡 = 𝜔 𝑡 ,𝜔 𝑡 + 𝜏 : 𝑡 ∈ ℝ

𝑊𝑖 𝑡 = 𝜔𝑖 𝑡 , 𝜔𝑖 𝑡 + 𝜏 : 𝑡𝑖−1 ≤ 𝑡 ≤ 𝑡𝑖

• Lemma : The time delay embedding of a sinusoidal function 

with a suitable time delay is an ellipse.



3.2. Wheeze Modeling

• The time delay embedding 𝑊 of a wheeze signal is similar to 

the union of 𝑊𝑖 with few point missed. And therefore, the Rips 

complex associated to the corresponding point cloud of 𝑊 is 

close to a set of concentric ellipse with angles of rotation ±45∘, 
which always has at least one 1-dimensional persistent hole.

• On the other hand, using experimental results, the one shows 

that the first persistent Betti number of the delay embedding of 

a non-wheeze signal is zero.



3.3. Experimental Results

Figure 5.[Emrani Saba, 2014] Delay-embedding of non-wheeze signals recorded over 

(a) apex, (b) midlung and (c) chest. Delay embeddings of some wheeze signals.



3.3. Experimental Results

Figure 6.[Emrani Saba, 2014] Point cloud sampling, (a) and (d): the delay 

embedding of a non-wheeze and a wheeze signal including 4000 points, 100 

subsamples slected using random method (b)(e) and maximin method (c)(f).



3.3. Experimental Results

Figure 7.[Emrani Saba, 2014] The barcodes for a non-wheeze breathing sound signal 

(left) and a wheeze signal (right). The “significant” barcode is highlighted in red and is 

used to distinguish wheeze signals from non-wheeze signals.



3.3. Experimental Results

• The accuracy of proposed technique is 98.39% while the 

accuracy of the time-frequency analysis techniques proposed 

in [3] and [4] without using persistent homology are 86.2% 

and 95.5%, respectively.



Thanks!


