Review of Modular Forms and Introduction to Modular Curves

Yifan Wu

12131236

28th Sep, 2023

イロト 不同 とうほう 不同 とう

3

1/30

References I

- [DS05] Fred Diamond and Jerry Michael Shurman, A first course in modular forms, vol. 228, Springer, 2005.
- [KM85] Nicholas M Katz and Barry Mazur, *Arithmetic moduli of elliptic curves*, no. 108, Princeton University Press, 1985.
- [Mil90] James S Milne, *Modular functions and modular forms*, Course Notes of the University of Michigan (1990).

2 Modular Functions and Modular Forms

Let $\Lambda = \alpha \mathbb{Z} + \beta \mathbb{Z} \subset \mathbb{C}$ be a lattice. $E = \mathbb{C}/\Lambda$ is an elliptic curve.

$$\mathbb{C}/\Lambda\cong\mathbb{C}/\Lambda'$$

iff $\Lambda = \gamma \Lambda'$ for some $\gamma \in \mathbb{C}$.

How can we classify these elliptic curves up to isomorphism?

That is for what $au, au' \in \mathbb{H}$ we have

$$\Lambda_{\tau} = \mathbb{Z}\tau + \mathbb{Z} \cong \mathbb{Z}\tau' + \mathbb{Z} = \Lambda_{\tau'} ?$$

(日)

4/30

$$\tau' = \gamma a\tau + \gamma b,$$

$$1 = \gamma c\tau + \gamma d.$$

for some $a, b, c, d \in \mathbb{Z}$ such that,

$$au' = rac{a au+b}{c au+d}, \ \ egin{bmatrix} a & b \ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z}).$$

Hence each point on $\Gamma(1) \setminus \mathbb{H}$ represents an class of elliptic curves.

 $\operatorname{SL}_2(\mathbb{Z})/\{\pm I\}$ is generated by

$$S = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
, and $T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$,

with action on \mathbb{H} :

$$Sz = -\frac{1}{z}, \quad Tz = z+1.$$

Let $D = \{z \in \mathbb{H} \mid |z| \ge 1, |\operatorname{Re}(z)| \le \frac{1}{2}\}$, which is called the **fundamental domain** for $\Gamma(1)$, we have the following picture.

Fundamental Domain for $\Gamma(1)$

How to classify an elliptic curve E with a point C of exact order N?

$$(\mathbb{C}/\Lambda_{\tau}, 1/N) \xrightarrow{m} (\mathbb{C}/\Lambda_{\tau'}, 1/N)$$

This means that first $\tau \sim \tau'$ under $\Gamma = \mathrm{SL}_2(\mathbb{Z})$. $m = c\tau' + d$, and we have

$$rac{c au'+d}{N}-rac{1}{N}\in \Lambda_{ au'}.$$

Hence $(c, d, a) = (0, 1, 1) \mod N$. Thus we define

$$\Gamma_1(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \mod N \right\}.$$

Modular Curves over \mathbb{C}

$$\begin{split} Y_1(N) &:= \Gamma_1(N) \backslash \mathbb{H} \rightsquigarrow (\mathbb{C}/\Lambda, C) \\ Y_0(N) &:= \Gamma_0(N) \backslash \mathbb{H} \rightsquigarrow (\mathbb{C}/\Lambda, \langle C \rangle) \\ Y(N) &:= \Gamma(N) \backslash \mathbb{H} \rightsquigarrow (\mathbb{C}/\Lambda, (P, Q)) \end{split}$$

where

$$\begin{split} \Gamma_0(N) &= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z}) \ : \ \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \bmod N \right\}, \\ \Gamma(N) &= \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_2(\mathbb{Z}) \ : \ \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \bmod N \right\}. \end{split}$$

9 / 30

▲口▶ ▲御▶ ▲注▶ ★注▶ 一注

Compactification and Cusps

Compactification:

$$Y_*(N) \xrightarrow{\text{Adding points}} X_*(N)$$

Those additional points are called **cusps**.

 $\Gamma(1)$ has only one cusp, namely $i\infty$, and the resulting compact Riemann surface $X(1) \cong S^2$, which has genus 0.

The first $X_0(p)$ with nonzero genus is $X_0(11)$ with has g = 1.

Genus Formulas

For each congruence subgroup $\Gamma \subset \Gamma(1)$, we have a natural map

$$\pi:X(\Gamma)=\Gammaackslash\mathbb{H}\Rightarrow\Gamma(1)ackslash\mathbb{H}=X(1).$$

By Hurwitz formula, we have

$$g(X(\Gamma)) = 1 + \frac{d}{12} - \frac{e_2}{4} - \frac{e_3}{3} - \frac{v_{\infty}}{2},$$

where $d = \deg \pi$, e_2 , e_3 corresponds to number of elliptic points for Γ of order 2, 3 respectively, and v_{∞} is the number of cusps for Γ .

Moduli Schemes

Let C/S be an elliptic curve over a scheme S. In particular, over a field k, we have the Weierstrass equation

$$C: y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6.$$

$$W = \operatorname{Spec}\mathbb{Z}[a_1, a_2, a_3, a_4, a_6, \Delta^{-1}]$$

Spec $k \rightarrow W$ gives isomorphism class of elliptic curves over k?

 $\mathcal{M}_{ell} := [W/H]$ is called the **moduli stack** of elliptic curves, and $\mathcal{M}_{ell}(S)$ does indeed give the groupoid of elliptic curves over S!

A moduli problem over S is a contravariant functor

$$\phi: Ell/S \Rightarrow Sets$$

Over $\mathbb{Z}[1/N]$ the problem $[\Gamma_1(N)]$ and $[\Gamma(N)]$ are representable, while $[\Gamma_0(N)]$ only be relative representable.

Remark: There is a local model around the supersingular locus for the moduli scheme $\mathcal{M}_{N,p}$ of moduli problem $[\Gamma_1(N) \times \Gamma_0(p)]$ over $\mathbb{Z}[1/N]$ provided by Zhu, in [Zhu18, Semi-stable].

A meromorphic function on $X(\Gamma)$ is equivalent to

f meromorphic on $\mathbb{H}^*, f(\gamma z) = f(z), \gamma \in \Gamma$

such functions are called modular functions.

There are some h with $T^h \in \Gamma$, hence f(z + h) = f(z) is periodic.

At cusp $i\infty$, $f^*(q)$ meromorphic at q = 0, $q = e^{2\pi i z/h}$. At cusp $\tau \neq i\infty$, there is $\theta \in \Gamma(1)$, with $\tau = \theta(i\infty)$. $f(\theta z)$ is invariant under $\theta \Gamma \theta^{-1}$, we require $f(\theta z)$ meromorphic at $i\infty$.

Modular Forms

Let f be a holomorphic function on \mathbb{H} with

•
$$f(\gamma z) = (cz + d)^{2k} f(z)$$
 for $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma$;

- f holomorphic on \mathbb{H} ;
- f holomorphic at cusps for Γ .

These functions are called modular forms of weight 2k.

Such a modular form vanishing at all cusps are called **cusp form**.

Here are some important examples.

• Eisenstein series
$$G_k(\Lambda) := \sum_{\omega \in \Lambda, \omega \neq 0} \omega^{-2k}$$
. And
 $G_k(z) := G_k(z\mathbb{Z} + \mathbb{Z}) = \sum_{\substack{(m,n) \neq (0,0)}} 1/(mz+n)^{2k}$

It is a modular form of weight 2k for $\Gamma(1)$, with value $2\xi(2k)$ at the cusp.

•
$$\Delta := g_2^3 - 27g_3^2$$
, $g_2 = 60G_2$ and $g_3 = 140G_3$.

Modular form for $\Gamma(1)$, weight: 12. Cusp form.

•
$$j := 1728g_2^3/\Delta$$

Modular function for $\Gamma(1)$, with a simple pole at cusp $i\infty$, and j(i) = 1728, $j(\rho) = 0$.

Relation with Elliptic Curves

Recall that over \mathbb{C} , any elliptic curve can be written as

$$E: y^2 = 4x^3 - ax - b.$$

And we require $\Delta \stackrel{def}{=} a^3 - 27b^2 \neq 0$. $j(E) \stackrel{def}{=} 1728a^3/\Delta$.

There is a Weierstrass \wp function defined by

$$\wp'(z; \Lambda) = rac{1}{z^2} + \sum_{\omega \in \Lambda, \omega
eq 0} \left(rac{1}{(z-\omega)^2} - rac{1}{\omega^2}
ight)$$

18 / 30

イロン 不同 とくほど 不良 とうほ

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3.$$

For any lattice Λ , we define $E(\Lambda)$ to be

$$y^2 = 4x^3 - g_2x - g_3$$

Then there is an isomorphism

$$\mathbb{C}/\Lambda \to E(\Lambda), \begin{cases} z & \mapsto (\wp(z) : \wp'(z) : 1), \ z \neq 0 \\ 0 & \mapsto (0 : 1 : 0) \end{cases}$$

19/30

▲口▶ ▲御▶ ▲注▶ ★注▶ 一注

Dimension Formulas

Consider $\omega = f(z)dz$ a differential form on $X(\Gamma)$, then we must have

$$\gamma^*\omega = f(\gamma z) \cdot d \frac{az+b}{cz+d} = \omega$$

this is equivalent to f is a meromorphic modular form of weight 2.

Hence we can identity such a modular form with a section of $\Omega_{X(\Gamma)}$

f weight
$$2k \rightsquigarrow$$
 section of $\Omega_{X(\Gamma)}^{\otimes n}$

By Riemann-Roch, we can compute the dimension of $\mathcal{M}_k(\Gamma)$.

$$\dim \mathcal{M}_k(\Gamma) = \begin{cases} 0 & k \leq -1 \\ 1 & k = 0 \\ (2k-1)(g-1) + v_{\infty}k + \sum_P [k(1-\frac{1}{e_P})] & k \geq 1 \end{cases}$$

$$k = 1 2 3 4 5 6 7 \dots$$

$$\dim \mathcal{M}_k = 0 1 1 1 1 2 1 \dots$$

Table: Dimension of \mathcal{M}_k for $\Gamma(1)$

dim $\mathcal{M}_k(\Gamma(1)) = 1 - k + [k/2] + [2k/3], \ k > 1.$

<ロト < 団 > < 臣 > < 臣 > 王 の Q () 21 / 30

Proposition 2.1

• $\Delta : \mathcal{M}_{k-6} \to \mathcal{S}_k$ is isomorphic.

•
$$\mathcal{M}(\Gamma(1)) = \bigoplus \mathcal{M}_k = \mathbb{C}[G_2, G_3].$$

The inverse of Δ is $f \mapsto f/\Delta$. For f and Δ both have zeros at $i\infty \Rightarrow f/\Delta \in \mathcal{M}_{k-6}$.

Expansion of Δ and j

•
$$\Delta = (2\pi)^{12} q \prod_{n=1}^{\infty} (1-q^n)^{24}$$
, $q = e^{2\pi i z}$

Verify $f(-1/z) = z^{12}f(z)$, and dim $S_{12} = 1$.

- $q \prod_{n=1}^{\infty} (1-q^n)^{24} = \sum \tau(n)q^n$, τ is called the Ramanujan τ -function.
- $j = \frac{1}{q} + 744 + 196884q + 21493760q^2 + \cdots$, with all coefficients **integral**.

Remark: The coefficients of j have a closed relation with monster groups. Moonshine...

Figure: Graph of two functions

Ramanujan's Conjecture

Recall that we have a cusp form of weight 12:

$$f = q \prod_{n=1}^{\infty} (1-q^n)^{24} = \sum_{n=1}^{\infty} \tau(n)q^n.$$

$$\begin{cases} \tau(m)\tau(n) = \tau(mn) \text{ if } \gcd(m,n) = 1\\ \tau(p)\tau(p^n) = \tau(p^{n+1}) + p^{11}\tau(p^{n-1}), \text{ } p \text{ prime}, \text{ } n \ge 1. \end{cases}$$

<ロト <回ト < Eト < Eト を E の Q (~ 25 / 30

Hecke Operators

There are such linear operators

$$T(n):\mathcal{M}_k(\Gamma(1))
ightarrow\mathcal{M}_k(\Gamma(1))$$

for each $n \ge 1$, with relations

$$\begin{cases} T(m)T(n) = T(mn) \text{ if } gcd(m,n) = 1\\ T(p)T(p^n) = T(p^{n+1}) + p^{2k-1}T(p^{n-1}), p \text{ prime}, n \ge 1 \end{cases}$$

and preserve $S_k(\Gamma(1))$.

Suppose $f = \sum c(m)q^m$, then let $T(n)f = \sum \gamma(m)q^m$, we have

$$\gamma(m) = \sum_{a \mid \gcd(m,n)} a^{2k-1} \cdot c(\frac{mn}{a^2}).$$

In particular, $\gamma(1) = c(n)$.

Proposition 3.1

If $f \neq 0$ is an eigenform, i.e. $T(n)f = \lambda(n)f$ for all n, then $c(1) \neq 0$. Moreover, if f is nolmalized, i.e. c(1) = 1, then $\lambda(n) = c(n)$.

$$\gamma(1)=c(n)=\lambda(n)c(1),\ c(1)=0$$
 implies $f=0.$

- dim $S_{12}(\Gamma(1)) = 1 \Rightarrow f$ is an normalized eigenform.
- $\tau(n)$ satisfies those formulas for $\tau(n) = \lambda(n)$

What's Beyond

- Double coset operators: $\langle n \rangle$, $T(n) : \mathcal{M}_k(\Gamma_1) \to \mathcal{M}_k(\Gamma_2)$.
- Peterson inner product: $S_k(\Gamma_1(N))$ a Hilbert space.
- S_k(Γ₁(N)) has orthogonal basis consists of eigenforms of {⟨n⟩, T(n) : gcd(n, N) = 1}.
- $S_k(\Gamma_1(N))$ can decomposed into 'old forms' and 'new forms'.

