TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000-000 S 0002-9947(XX)0000-0

POWER OPERATIONS OF MORAVA E-THEORY LOCALIZED AT MORAVA K-THEORY

YIFAN WU

ABSTRACT. We calculate K(n-1)-localized E_n theory for symmetric groups, deduce the same conclusions as Strickland and find an interpretation of the total power operation ψ_F^p in terms of augmented deformations. Then we specify our calculation to the n = 2 case. We calculate an explicit formula for ψ_F^p using the formula of ψ_E^p , and explain connections between these computations and elliptic curves.

CONTENTS

1. $K(n-1)$ -localized E-theory for symmetric groups	1
1.1. Calculations of $F^*B\Sigma_k$ and $F^*B\Sigma_k/I$	2
1.2. Modular interpretation of ψ_F^p	3
1.3. Augmented deformations	6
2. An explicit Calculation on the $n = 2$ case	7
2.1. The formula for ψ_F^p	7
2.2. Interaction with elliptic curves	10
3. Connection with Galois Representations	12
References	12

1. K(n-1)-localized *E*-theory for symmetric groups

Let E be the Morava E-theory associated to a height n formal group over a field k, and F be the K(n-1)-localization of E. The coefficient ring

 $F^* = W(k)((u_{n-1}))_p^{\wedge} \llbracket u_1, \dots, u_{n-2} \rrbracket [u^{\pm}]$

is a Noetherian complete local ring with the maximal ideal $(p, u_1, \ldots, u_{n-2})$. It satisfies the conditions in [HKR00, Section 1.3], in particular, $p^{-1}F^* \neq 0$ by direct computation.

In this section, we calculate the ring $F^*B\Sigma_k$ and $F^*B\Sigma_k/I$ following the procedure in [Str98] and give an interpretation of the total power operation ψ_F in terms of subgroups of a certain formal group.

©XXXX American Mathematical Society

Received by the editors 20th, Dec, 2023.

²⁰¹⁰ Mathematics Subject Classification. Primary .

Key words and phrases. Algebraic Topology, Modular forms.

1.1. Calculations of $F^*B\Sigma_k$ and $F^*B\Sigma_k/I$.

Theorem 1.1. $F^0 B\Sigma_k$ is a Noetherian local ring and a free module over F^0 of rank d(n-1,k), which is defined to be the number of isomorphism classes of order k sets with an action of \mathbb{Z}_p^{n-1} .

Proposition 1.2. $F^*B\Sigma_k$ is finitely generated over F^* .

Proof. This is a consequence of [GS99, Corollary 4.4]. We need to verify F is admissible in the sense of [GS99, Definition 2.1]. E^0 is Noetherian and both localization and completion preserve Noetherianess. Hence F^0 is Noetherian and all other conditions are satisfied automatically.

Proposition 1.3. $F^*B\Sigma_k$ is free over F^* , concentrated in even degrees.

Proof. From [Str98, Proposition 3.6], we know that E^*BG is concentrated in even degrees. Let $u_{n-1}^{-1}E$ be the homotopy colimit of $\cdots \xrightarrow{u_{n-1}} E \xrightarrow{u_{n-1}} E \to \cdots$, where u_{n-1} is the corresponding element in E^0 and let $u_{n-1}^{-1}E/(p, u_1, \ldots, u_{n-2})$ be the cofiber, denoted by $K_{u_{n-1}}$.

We claim that $K_{u_{n-1}}^* B\Sigma_k$ is concentrated in even degrees and free. First $(u_{n-1}^{-1}E)^* B\Sigma_k$ is concentrated in even degrees for the $E^* B\Sigma_k$ being so. Consider the cofibration

$$u_{n-1}^{-1}E \xrightarrow{p} u_{n-1}^{-1}E \to u_{n-1}^{-1}E/(p)$$

which induces a long exact sequence of cohomology groups.

$$0 \longrightarrow (u_{n-1}^{-1}E/p)^{2n-1}B\Sigma_k \longrightarrow (u_{n-1}^{-1}E)^{2n}B\Sigma_k \longrightarrow (u_{n-1}^{-1}E/p)^{2n}B\Sigma_k$$

Still from [Str98, Proposition 3.6], the element p acts regularly on $E^{\text{even}}B\Sigma_k$, hence also regular on $(u_{n-1}^{-1}E)^{\text{even}}B\Sigma_k$. Therefore multiplication by p is injective, which implies $(u_{n-1}^{-1}E/p)^*B\Sigma_k$ concentrated in even degrees, then by induction. Since $\pi_*K_{u_{n-1}}$ is a graded field $k((u_{n-1}))[u^{\pm}], K_{u_{n-1}}^*B\Sigma_k$ is automatically free.

Now let $F_i = F/(p, u_1, \ldots, u_{i-1})$, and let $F_0 = F$. By construction, we have $F_{n-1} = K_{u_{n-1}}$. We will show that if $F_i^* B\Sigma_k$ is free and concentrated in even degrees, the same is true for i-1 as well. Again, there is a long exact sequence of cohomology groups

$$F_{i-1}^* B\Sigma_k \to F_{i-1}^* B\Sigma_k \to F_i^* B\Sigma_k$$

obtained from the cofibration

$$F_{i-1} \xrightarrow{u_i} F_{i-1} \to F_i.$$

Each $F_i^* B\Sigma_k$ is finitely generated by Proposition 1.2. Since $F_i^* B\Sigma_k$ is concentrated in even degrees, multiplying u_i on $F_{i-1}^{\text{odd}} B\Sigma_k$ is a surjective. Hence by Nakayama's lemma, $F_{i-1}^{\text{odd}} B\Sigma_k = 0$. From this, we know the action of u_i on $F_{i-1}^{\text{even}} B\Sigma_k$ is regular, and $F_{i-1}^* B\Sigma_k/u_i = F_i^* B\Sigma_k$ which implies that $F_{i-1}^* B\Sigma_k$ is a free F^* module. \Box

Proof of Theorem 1.1. Applying [HKR00, Theorem C], we have the rank of $p^{-1}F^*B\Sigma_k$ over $p^{-1}F^*$ is just d(n-1,k). By Proposition 1.3, this rank must equal to the rank of $F^*B\Sigma_k$ over F^* .

 $\mathbf{2}$

Proposition 1.4. The ring $F^0 B\Sigma_k / I = 0$ for $k \neq p^m$ and $R_m := F^0 B\Sigma_{p^m} / I$ is a free module over F^0 of rank $\overline{d}(n-1,m)$, where I is the transfer ideal and $\overline{d}(n-1,m)$ denotes the number of lattices of index p^m in \mathbb{Z}_n^{n-1} .

Proof. For the first sentence, there is a standard argument in [Str98, Lemma 8.10]. For the second, using the method in [ST97] we see that $L(DS^0) := \prod L \otimes_{F^0} F^0 B\Sigma_k$ is a Hopf ring, which can be identified with the ring of functions $F(\mathbb{B}, L)$, where Lis a ring extension of F^0 with p^{-1} and all roots of the *p*-series of the formal group law over F^0 added and \mathbb{B} is the Burnside semiring.

The \times -indecomposables $\operatorname{Ind} L(DS^0) = \prod L \bigotimes_{F^0} F^0 B\Sigma_k / I_k$ is identified with $F(\mathbb{L}, L)$, where \mathbb{L} is the set if all lattices in \mathbb{Z}_p^{n-1} and I_k is the transfer. Hence we have an isomorphism $L \otimes_{F^0} F^0 B\Sigma_k / I_k \cong F(\mathbb{L}_k, L)$, with \mathbb{L}_k being the set of such lattices of index k. This implies the rank of R_m over F^0 is $\overline{d}(n-1,m)$. \Box

1.2. Modular interpretation of ψ_F^p . Let \mathbb{G}_E and \mathbb{G}_F be the formal groups over $\operatorname{Spf}(E^0)$ and $\operatorname{Spf}(F^0)$ respectively. In [Str98, Section 9], the scheme $\operatorname{Spf}(E^0 B \Sigma_{p^k} / I)$ is identified with the subgroup scheme $\operatorname{Sub}_m(\mathbb{G}_E)$ [Str97, Theorem 10.1] over $\operatorname{Spf}(E^0)$

The same procedure can be carried through with ${\cal E}$ replaced by ${\cal F}$ without harm.

Proposition 1.5. There is a canonical isomorphism $\operatorname{Spf}(F^0 B\Sigma_{p^m}/I) \to \operatorname{Sub}_m(\mathbb{G}_F)$. That is, the ring $F^0 B\Sigma_{p^m}/I$ classifies degree p^m subgroups of \mathbb{G}_F .

Proof. There is a canonical map from $\mathcal{O}_{\operatorname{Sub}_m(\mathbb{G}_F)}$ to $F^0 B \Sigma_{p^m} / I$ as constructed in [Str98, Proposition 9.1]. Note that, these two rings has the same rank over F^0 . So we proceed as [Str98, Theorem 9.2], by showing

$$k((u_{n-1})) \otimes_{F^0} \mathcal{O}_{\operatorname{Sub}_m(\mathbb{G}_F)} \to k((u_{n-1})) \otimes_{F^0} F^0 B\Sigma_{p^m} / I$$

is injective. The key ingredient here is to show $b_m = c_{p^m}^{(p^{n-1}-1)/(p-1)} \neq 0$ in $k((u_{n-1})) \otimes_{F^0} F^0 B\Sigma_{p^m}$, where $c_{p^m} = e(V_{p^m} - 1)$ is the Euler class of representation $V_{p^m} - 1$ in $F^0 B\Sigma_{p^m}$ and V_{p^m} is the standard complex representation of Σ_{p^m} . To accomplish this, we make a comparison between $E^0 B\Sigma_k$ and $F^0 B\Sigma_k$.

Let $a_m = c_{p^m}^{(p^n-1)/(p-1)} \in E^0 B \Sigma_{p^m}$. It has been shown that $a_m \neq 0 \mod (p, u_1, \ldots, u_{n-1})$ [Str98, Theorem 3.2]. Consider the diagram

To show $b_m \neq 0$ in the right hand side, it suffices to show the image of a_m in the right corner is not zero. Since u_{n-1} acts regularly on $E^0 B \Sigma_{p^m} / (p, u_1, \ldots, u_{n-2})$, we have $a_m \neq 0$ in $u_{n-1}^{-1} E^0 B \Sigma_{p^k}$. Otherwise, $u_{n-1}^t a_m = 0$ implies $a_m \in (p, u_1, \ldots, u_{n-2})$. It follows easily that $a_m \neq 0 \mod (p, u_1, \ldots, u_{n-2})$ in $u_{n-1}^{-1} E^0 B \Sigma_{p^m}$. That is

$$a_m \neq 0 \in u_{n-1}^{-1} E^0 B\Sigma_{p^k} / (p, u_1, \dots, u_{n-2}) = K_{u_{n-1}}^0 B\Sigma_{p^m}.$$

The rest follows [Str98, Theorem 9.2].

Remark 1.6. We can not obtain this result directly from [Str97, Theorem 10.1] which asserts that

$$\operatorname{Spf} F^0 \times_{\operatorname{Spf} E^0} \operatorname{Sub}_m(\mathbb{G}_E) = \operatorname{Sub}_m(\operatorname{Spf} F^0 \times_{\operatorname{Spf} E^0} \mathbb{G}_E) = \operatorname{Sub}_m(\mathbb{G}_F)$$

The failure of this equation is because the map $E^0 \to F^0$ is not continuous.

In order to figure out how the total power operation

 $\psi_F^p: F^0 \longrightarrow F^0 B \Sigma_p / I$

interacts with the modular interpretation of $F^0 B \Sigma_p / I$, we shall recall some constructions from [AHS04, Section 3].

Let Y denote the function spectrum $F(\mathbb{C}P^{\infty}, F)$, we have

$$\pi_0 Y = F^0 \mathbb{C} P^\infty = F^0 \llbracket x \rrbracket$$

which is a complete local Noetherian ring, with maximal ideal $(p, u_1, \ldots, u_{n-2}, x)$ and the canonical map $\pi_0 F \to \pi_0 Y$ is continuous with respect to their maximal ideal topology.

Proposition 1.7. The ring $Y^0 B\Sigma_p / J$ is free over Y^0 and equal to $Y^0 \otimes_{F^0} F^0 B\Sigma_p / I$, where I and J are transfer ideals respectively.

Proof. For each k, we have

$$Y^*B\Sigma_k = [\Sigma^{\infty}_+ B\Sigma_k, F(\mathbb{C}P^{\infty}, F)] = [\Sigma^{\infty}_+ (B\Sigma_k \wedge \mathbb{C}P^{\infty}), F] = F^*(B\Sigma_k \wedge \mathbb{C}P^{\infty}).$$

By the Atiyah Hirzebruch spectral sequence, we have

$$E_2^{p,q} = H^p(\mathbb{C}P^\infty, F^q B\Sigma_k) \Rightarrow Y^{p+q} B\Sigma_k$$

Since $F^*B\Sigma_k$ is concentrated in even degrees, we conclude that

$$Y^* B\Sigma_k = Y^* \otimes_{F^*} F^* B\Sigma_k.$$

It follows that $Y^0 \otimes_{F^0} I = J$, and hence

$$Y^0 B\Sigma_p / J = Y^0 \otimes_{F^0} F^0 B\Sigma_p / I.$$

which completes the proof.

In the language of algebraic geometry, $\operatorname{Spf} Y^0 = \mathbb{G}_F$ and the above proposition can be summarized as the pullback diagram.

Together with the naturality of the total power operation:

$$i^* \mathbb{G}_F \xrightarrow{\psi_Y^*} \mathbb{G}_F$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spf}(F^0 B\Sigma_p / I) \xrightarrow{\psi_F^*} \operatorname{Spf} F^0$$

we obtain a map $\psi_{Y/F}^*: i^* \mathbb{G}_F \to (\psi_F^p)^* \mathbb{G}_F$ over the ring $F^0 B \Sigma_p / I$, as indicated in the diagram.

Proposition 1.8. The isogeny $\psi_{Y/F}^*$: $i^*\mathbb{G}_F \to (\psi_F^p)^*\mathbb{G}_F$ is of degree p over $F^0B\Sigma_p/I$, with kernel the universal degree p subgroup K of \mathbb{G}_F over $F^0B\Sigma_p/I$.

Proof. Choosing a coordinate x on \mathbb{G}_F , ψ_Y^* sends x to x^p in $Y^0 B\Sigma_p / J = \mathcal{O}_{i^* \mathbb{G}_F}$ modulo maximal ideal of Y^0 . This follows from

$$\pi_0 Y \xrightarrow{D_p} \pi_0 Y^{B\Sigma_p^+} \xrightarrow{S^0 \to B\Sigma_p^+} \pi_0 Y$$

sending x to x^p . Since $(\psi_F^p)^*(x) = x$, we conclude that $\psi_{Y/F}^*$ is of degree p. Therefore the kernel of $\psi_{Y/F}^*$ is of rank p.

To show the kernel is precisely the universal degree p subgroup K of \mathbb{G}_F over $F^0 B\Sigma_p / I$, we need to recall the construction of K from [Str98, Proposition 9.1](in which K is denoted by H_k). Let V_p be the standard permutation representation of Σ_p . There is a divisor $\mathbb{D}(V_p)$ of degree p over $F^0 B\Sigma_p$, whose base change to $F^0 B\Sigma_p / I$ is K. Let A be a transitive abelian p subgroup of Σ_p , we have a composition of maps

$$\operatorname{Level}(A^*, \mathbb{G}_F) \to \operatorname{Hom}(A^*, \mathbb{G}_F) = \operatorname{Spf} F^0 B A \to \operatorname{Spf} F^0 B \Sigma_p$$

The divisor $\mathbb{D}(V_p)$ becomes a subgroup divisor $\sum_{a \in A^*} [\ell(a)]$ with ℓ the universal level- A^* structure of \mathbb{G}_F on Level (A^*, \mathbb{G}_F) (See [AHS04, Section 3] for definition). It is claimed in [Str98, Proposition 9.1] that the map

$$\text{Level}(A^*, \mathbb{G}_F) \to \text{Spf}\,F^0 B\Sigma_p$$

factors through $\operatorname{Spf} F^0 B\Sigma_p / I$ and the union of the images of these maps for all such A is actually $\operatorname{Spf} F^0 B\Sigma_p / I$. Hence it is sufficient to show the base change of $\operatorname{ker} \psi_{Y/F}^*$ to $\operatorname{Level}(A^*, \mathbb{G}_F)$ is $\Sigma_{a \in A^*}[\ell(a)]$.

Now Let $D(A) = \mathcal{O}_{\text{Level}(A^*, \mathbb{G}_F)}$, the following diagram

implies the composition of the total power operation ψ_F^p and the dashed arrow is ψ_F^ℓ (See [AHS04, Definition 3.9]). Hence after base change to Level(A^*, \mathbb{G}_F), the map $\psi_{Y/F}^*$ becomes $\psi_\ell^{Y/F}$ [AHS04, diagram 3.14]. According to [AHS04, Proposition 3.21], the kernel of $\psi_\ell^{Y/F}$ is precisely $\ell[A] = \sum_{a \in A^*} [\ell(a)]$. 1.3. Augmented deformations. In this section, we combine our analysis about $F^0 B\Sigma_p/I$ and the modular interpretation of F^0 in terms of augmented deformations. Recall that there is a formal group \mathbb{G}_F over F^0 , which is the base change of the universal deformation \mathbb{G}_E . Let \mathbb{G}_F^0 be the special fiber of \mathbb{G}_F , which is the base change of \mathbb{G}_F over the residue field $k((u_{n-1}))$ of F^0 .

The formal group \mathbb{G}_F^0 has height n-1 over $k((u_{n-1}))$. At first glance, one would like to construct the deformation theory of \mathbb{G}_F^0 as [LT66] does. However, the problem arises immediately for the field $k((u_{n-1}))$ being imperfect. A way to avoid the imperfectness is the treatment stated in [Van21]. We shall recall these constructions.

Definition 1.9. An augmented deformation of a formal group \mathbb{H} over $k((u_{n-1}))$ consists of a triple $(\mathbb{K}/R, i, \alpha)$ where

- R is a complete local ring and \mathbb{K} is a formal group over R,
- A local homomorphism $i: \Lambda \to R$ fits into the commutative diagram

• and an isomorphism $\alpha : \mathbb{H} \otimes_{k((u_{n-1}))}^{\overline{i}} R/\mathfrak{m} \simeq \mathbb{K} \otimes_R R/\mathfrak{m}$,

where $\Lambda = W(k)((u_{n-1}))_p^{\wedge}$ is a Cohen ring with residue field $k((u_{n-1}))$.

Theorem 1.10 ([Van21], Theorem 1.1). The ring F^0 classifies augmented deformations of \mathbb{G}_F^0 . To be precise, let $\operatorname{Def}_{\mathbb{G}_F^0}^{\operatorname{aug}}(R)$ denote the groupoid of augmented deformations of \mathbb{G}_F^0 together with isomorphisms. Then we have

$$\operatorname{Def}_{\mathbb{G}_{\mathbb{G}_{\mathbb{G}}^0}^{\operatorname{aug}}}^{\operatorname{aug}}(R) = \operatorname{Maps}_{cts}(F^0, R).$$

In particular, this implies the moduli problem of classifying augmented deformation is discrete.

Proof. This is simply a consequence of [LT66]. Suppose Γ is a height n formal group over a field k, with k a residue field of a complete local A algebra. The functor $\operatorname{Def}_{\Gamma}^{A} : \operatorname{CLN}_{A} \to \operatorname{Groupoids}$ from the category of complete local Noetherian A algebras to groupoids which sends R to the groupoid of deformations of Γ over R is discrete and corepresented by the ring $A[u_1, \ldots, u_{n-1}]$.

Note that for any $R \in CLN$, with the diagram

there is a continuous map from Λ to R, which lifts \overline{i} [Van21, Corollary 2.9]. Therefore the ring R which carries a deformation of \mathbb{G}_F^0 is automatically a Λ algebra. Thus we have

$$\operatorname{Def}_{\mathbb{G}_{F}^{0}}(R) = \operatorname{Def}_{\mathbb{G}_{F}^{0}}^{\Lambda}(R) = \operatorname{Def}_{\mathbb{G}_{F}^{0}}^{\operatorname{aug}}(R).$$

Applying the Lubin-Tate's theorem, we find that the functor $\operatorname{Def}_{\mathbb{G}_F^0}^{\Lambda}$ is corepresented by the ring $\Lambda[\![u_1,\ldots,u_{n-2}]\!]$, which is just F^0 . **Theorem 1.11.** The ring $F^0 B \Sigma_{p^m} / I$ is free over F^0 of rank $\overline{d}(m, n-1)$. It classifies augmented deformations of \mathbb{G}_F^0 together with a subgroup of degree p^m .

$$\operatorname{Maps}_{cts}(F^0 B \Sigma_{p^m} / I, R) = \{ (\mathbb{K} / R, H) \}$$

To be precise, for any complete local ring R, there is a bijection between the set of continuous maps from $F^0 B \Sigma_{p^m} / I$ to R and the set of all pairs $(\mathbb{K}/R, H)$, where \mathbb{K} is an augmented deformations of \mathbb{G}_F^0 and H is a degree p^m subgroup of \mathbb{K} .

Equivalently, $F^0 B \Sigma_{p^m} / I$ classifies augmented deformations of m'th Frobenius [Rez09, Section 11.3], with the universal example

$$\psi_{Y/F}^*: i^* \mathbb{G}_F \to (\psi_F^{p^m})^* \mathbb{G}_F$$

defined in the Proposition 1.8.

Proof. Combines Proposition 1.7, 1.8 and Theorem 1.10

```
2. An explicit Calculation on the n = 2 case
```

Let E be a Morava E-theory of height 2 over the field $\overline{\mathbb{F}}_p$, with

$$E^* = W(\overline{\mathbb{F}}_p)\llbracket u_1 \rrbracket [u^{\pm}]$$

Let F be the K(1) localization of E, whose coefficients ring is

$$F^* = W(\overline{\mathbb{F}}_p)((u_1))_p^{\wedge}[u^{\pm}].$$

Let \mathbb{G}_E and \mathbb{G}_F be the formal groups over E^0 and F^0 respectively.

, p

In this section, we give an explicit calculation of the additive total power operation ψ_F^p in terms of the expression of ψ_E^p for the n = 2 case.

2.1. The formula for ψ_F^p . The naturality of the total power operations gives a diagram:

where I and J are the corresponding transfer ideals. The equality on the right corner is because the formal group \mathbb{G}_F is of height 1, hence $F^0 B \Sigma_p / J$ is free of rank $\bar{d}(1,1) = 1$ over F^0 .

Remark 2.1. From now on, we will use h instead of u_1 in E^* and F^* . This is because when height is 2, the ring E^0 can be viewed as the place where the universal deformation of a certain supersingular elliptic curve is defined. The letter h here stands for the Hasse invariant for it being a lift of Hasse invariant.

The map t in the middle is E^0 linear. To see this, consider the diagram

The maps in the top row are between E^0 modules and maps in the bottom can also be viewed as E^0 linear maps via $E^0 \to F^0$. Then one can check that the left two vertical maps are E^0 linear, which implies t is E^0 linear as well.

Now we can deduce the explicit expression of ψ_F^p via the calculation of ψ_E^p , which is summarized in the two theorems below.

Theorem 2.2 ([Zhu19], Theorem A). After choosing a preferred model for E [Zhu19, Definition 2,23], the ring $E^0 B \Sigma_p / I$ can be interpreted as

$$E^0 B\Sigma_p / I = W(\overline{\mathbb{F}}_p) \llbracket h, \alpha \rrbracket / w(h, \alpha)$$

with

(2.2)
$$w(h,\alpha) = (\alpha - p) \left(\alpha + (-1)^p\right)^p - \left(h - p^2 + (-1)^p\right) \alpha.$$

Theorem 2.3 ([Zhu19], Theorem B). The image of h under ψ_E^p is

(2.3)
$$\psi_E^p(h) = \alpha + \sum_{i=0}^p \alpha^i \sum_{\tau=1}^p w_{\tau+1} d_{i,\tau},$$

where w_i 's are defined to be

$$w_{i} = (-1)^{p(p-i+1)} \left[\binom{p}{i-1} + (-1)^{p+1} \binom{p}{i} \right]$$

and

$$d_{i,\tau} = \sum_{n=0}^{\tau-1} (-1)^{\tau-n} w_0^n \sum_{\substack{m_1 + \cdots + m_{\tau-n} = \tau + i \\ 1 \le m_s \le p+1 \\ m_{\tau-n} \ge i+1}} w_{m_1} \cdots w_{m_{\tau-n}}.$$

To determine the image of $h \in F^0 = W(\overline{\mathbb{F}}_p)((h))_p^{\wedge}$ under ψ_F^p , it suffices to determine the image of α in Theorem 2.2 under the map t. Then we have

$$\psi_F^p(h) = t \circ \psi_E^p(h)$$

by the diagram 2.1. Since t is an E^0 linear map, this requires us to find the solutions of $w(h, \alpha)$ in F^0 .

Proposition 2.4. There is a unique solution α^* of $w(h, \alpha)$ in $W(\overline{\mathbb{F}}_p)((h))_p^{\wedge}$ with

(2.4)
$$\alpha^* = (-1)^{p+1} p \cdot h^{-1} + \left(1 + (-1)^{p+1} \frac{p(p-1)}{2}\right) p^3 \cdot h^{-3} + lower \ terms$$

satisfies

$$w(h,\alpha) = (\alpha - p)(\alpha + (-1)^p)^p - (h - p^2 + (-1)^p)\alpha = 0.$$

Moreover, we have $\alpha^* = 0 \mod p$.

Proof. We write $w(h, \alpha)$ as $w_{p+1}\alpha^{p+1} + w_p\alpha^p + \dots + w_1\alpha + w_0$, where $w_{p+1} = 1$, $w_1 = -h$, $w_0 = (-1)^{p+1}p$, and

$$w_{i} = (-1)^{p(p-i+1)} \left[{p \choose i-1} + (-1)^{p+1} p {p \choose i} \right]$$

for other coefficients.

Since h is invertible in $W(\overline{\mathbb{F}}_p)((h))_p^{\wedge}$, the equation $w(h, \alpha) = 0$ implies

$$\alpha = h^{-1}(\alpha^{p+1} + w_p \alpha^p + \dots + w_2 \alpha^2 + w_0)$$

= $h^{-1}w_0 + \alpha^2(\alpha^{p-1} + w_p \alpha^{p-2} + \dots + w_2)h^{-1}$
= $h^{-1}w_0 + h^{-3}w_0^2w_2 + lower \ terms$

Substituting the second equation into itself recursively gives the desired formula for α^* as described in .

This iteration makes sense because the highest term of α^* is $h^{-1}w_0$ and $p|w_0$. Hence each substitution only create a lower terms, which is divided by a higher power of p, than current stage. Hence $\alpha^* = \sum_k a_k h^{-k}$ and the coefficient a_k satisfies $\lim_{k\to\infty} |a_k| = 0$, which implies α^* is indeed an element in $W(\overline{\mathbb{F}}_p)((h))_p^{\wedge}$.

The uniqueness comes from the following observation. Note that

$$w(h, \alpha) = \alpha(\alpha^p - h) \mod p.$$

This implies $w(h, \alpha)$ has only one solution 0 in the residue field of $W(\overline{\mathbb{F}}_p)((h))_p^{\wedge}$. Therefore it also has a unique solution in $W(\overline{\mathbb{F}}_p)((h))_p^{\wedge}$, which is α^* .

Theorem 2.5. Let F be a K(1)-local Morava E-theory at height 2. The total power operation ψ_F^p on F^0 is determined by

(2.5)
$$\psi_F^p(h) = \alpha^* + \sum_{i=0}^p (\alpha^*)^i \sum_{\tau=1}^p w_{\tau+1} d_{i,\tau},$$

where

$$\alpha^* = (-1)^{p+1} p \cdot h^{-1} + \left(1 + (-1)^{p+1} \frac{p(p-1)}{2}\right) p^3 \cdot h^{-3} + lower \ terms$$

is the unique solution of

$$w(h,\alpha) = (\alpha - p)(\alpha + (-1)^p)^p - (h - p^2 + (-1)^p)\alpha$$

in $W(\overline{\mathbb{F}}_p)((h))_p^{\wedge} \cong F^0$.

The other coefficients w_i and $d_{i,\tau}$ are defined in Theorem 2.3.

In particular, ψ_F^p satisfies the Frobenius congruence, i.e. $\psi_F^p(h) \equiv h^p \mod p$.

Proof. The formula 2.5 is obtained by assembling Theorem 2.3 and Proposition 2.4. The last sentence comes from $\psi_F^p \equiv \sum_{\tau=1}^p w_{\tau+1}d_{0,\tau} \mod p$, for α^* being zero after modulo p. Also notice that

$$w_i \equiv 0 \mod p, \ i = 0, 2, \cdots, p.$$

Therefore

$$\psi_F^p(h) \equiv \sum_{\tau=1}^p w_{\tau+1} d_{0,\tau} \equiv d_{0,p}$$

$$\equiv \sum_{n=0}^{p-1} (-1)^{p-n} w_0^n \sum_{\substack{m_1 + \cdots + m_{p-n} = p \\ 1 \le m_s \le p+1 \\ m_p = n \ge 1}} w_{m_1} \cdots w_{m_p}.$$

The only possibility in the last summation is $m_s = 1$, hence

$$\psi_F^p(h) \equiv (-1)^p w_1^p = (-1)^p (-h)^p = h^p \mod p$$

Example 2.6. We calculate these formulas for small *p*.

When p = 2, we have

$$\alpha^* = \frac{-2}{h} + \frac{-8}{h^4} + \frac{96}{h^7} + O(h^{-10})$$

and

$$\begin{split} \psi_F^2(h) &= h^2 + \alpha^* - h \cdot (\alpha^*)^2 \\ &= h^2 - \frac{6}{h} - \frac{40}{h^4} - \frac{544}{h^7} + O(h^{-10}). \end{split}$$

When p = 3, we have

$$\alpha^* = \frac{3}{h} + \frac{108}{h^3} - \frac{162}{h^4} + \frac{7857}{h^5} + O(h^{-6})$$

and

$$\psi_F^3(h) = h^3 - 6h^2 - 96h + 594 - \frac{1158}{h} + \frac{14580}{h^2} + \ lower \ terms.$$

Remark 2.7. In the p = 3 case, this power operation formula is different from which in [Zhu14, Section 5.4]. This is because the equation for α in [Zhu14] is not of the form as 2.2, but these two equations are equivalent [Zhu19, Remark 2.25]. In the semi-stable model of Morava *E*-theory [Zhu19, Definition 2.23, Mod.1⁺], it is required that $\text{Frob}^2 = (-1)^{p-1}[p]$, for instance, [3] in this case. While in [Zhu14], the model used is $\text{Frob}^2 = [-3]$.

Remark 2.8. The formula 2.5 relies on the E_{∞} structure on F. In our analysis, we equipped F with the E_{∞} structure induced from E via localization. However, F itself may admit a different E_{∞} structure. See [Van21, Section 6].

2.2. Interaction with elliptic curves. In this section, we state how these computations interact with elliptic curves and *p*-divisible groups.

Suppose C is a supersingular elliptic curve over a perfect field k with characteristic p. The formal group \widehat{C} associated with C is of height 2. Hence we can transport computations in topology to computations on elliptic curves. This is the initial idea of all explicit computations of height 2 Morava E theories. Rezk calculates the p = 2 case [Rez08] and Zhu calculates the p = 3 case [Zhu14].

To be explicit, let \mathscr{M}_N be the moduli stack of elliptic curves equipped with $\Gamma_1(N)$ structure, i.e. an N torsion point. Over $\mathbb{Z}[1/N]$, the moduli problem of $[\Gamma_1(N)]$ is representable, i.e. $\mathscr{M}_N/\mathbb{Z}[1/n]$ is a scheme. Choose a supersingular locus on \mathscr{M}_N , we can produce a height 2 formal group as stated above. Since C is supersinguar, the formal group \widehat{C} equals to the p-divisible group $C[p^{\infty}]$ of C. By this, a deformation of \widehat{C} is the same as a deformation of $C[p^{\infty}]$, which is equivalent to a deformation of C by the Serre-Tate's theorem [Tat67]. Hence we can construct a universal deformation \widehat{C} . Then we construct a corresponding Morava E theory of height 2 associated with E, which is also called E, via the Landweber exact functor theorem.

To calculate $E^0 B\Sigma_p/I$, it suffices to find the place where the universal degree p subgroup K of C_u is defined, for then K is also the universal degree p subgroup of $C_u[p^{\infty}] = \widehat{C}_u$. This procedure is feasible guaranteed by the moduli problem \mathcal{M}_p is relative representable and hence the simultaneous moduli problem $[\Gamma_1(N)] \times [\Gamma_0(p)]$ is representable by a scheme $\mathcal{M}_{N,p}$ [KM85]. In practice, one usually calculates the coordinates of a point of exact order p to find the explicit expression of $E^0 B\Sigma_p/I$ [Rez08, Zhu14], though these calculations are somehow ad hoc for different primes p.

Remark 2.9. Since in general, an elliptic curve will have p+1 subgroups of degree p. The moduli scheme $\mathcal{M}_{N,p}$ is of rank p+1 over \mathcal{M}_N , which is compatible with the rank of $E^0 B \Sigma_p / I$ over E^0 .

Remark 2.10. Zhu identifies the parameter α which parametrizes subgroups with a modular form of level $[\Gamma_0(p)]$. He then computes the value of α at cusps of $\mathcal{M}_{N,p}$ and uses this to derived the general formula 2.2 of $E^0 B \Sigma_p / I$ for arbitrary primes. [Zhu19]

Recall that the total power operation $\psi_E^p: E^0 \to E^0 B\Sigma_p / I$ stands for taking the target of the universal deformation of Frobenius. It can also be viewed as taking the target curve of the universal degree p isogeny as explained above.

Let \mathscr{C}_N be the universal curve of the moduli problem $[\Gamma_1(N) \times [\Gamma_0(N)]$ over $\mathscr{M}_{N,p}$. There is an isogeny $\Psi^p : \mathscr{C}_N \to \mathscr{C}_N/\mathscr{G}_N^{(p)}$, with $\mathscr{G}_N^{(p)}$ the universal degree p subgroup of \mathscr{C}_N , P_0 the N torsion point:

$$\left(\mathscr{C}_N, P_0, du, \mathscr{G}_N^{(p)}\right) \mapsto \left(\mathscr{C}_N/\mathscr{G}_N^{(p)}, \Psi^p(P_0), d\tilde{u}, \mathscr{C}_N[p]/\mathscr{G}_N^{(p)}\right)$$

Hence it induces an exotic endomorphism of $\mathcal{M}_{N,p}$ [KM85, Chapter 11], [Zhu19, Section 2.3], so called the Atkin Lehner involution. For a supersingular elliptic curve S, this Atkin Lehner involution takes S to itself. Therefore it restricts to an endomorphism of the formal neighborhood around the supersingular locus. The previous argument implies that the total power operation is

$$\psi_E^p: E^0 \hookrightarrow E^0 B \Sigma_p / I \xrightarrow{\omega} E^0 B \Sigma_p / I,$$

where ω is the restriction of the Atkin Lehner involution to the formal neighborhood of the given supersingular locus. It is determined by $\psi_E^p(h) = \tilde{h}$, where \tilde{h} is the image of h under the Atkin Lehner involution. The calculations along these ideas can be found in [Zhu20, Example 2.14].

Over F^0 , the *p*-divisible group \mathbb{G}_E becomes an extension

$$0 \to \mathbb{G}_F = \mathbb{G}_E^0 \to \mathbb{G}_E \to \mathbb{Q}_p / \mathbb{Z}_p \to 0$$

where \mathbb{G}_E^0 is the connected component of \mathbb{G}_E over F^0 . Or equivalently

$$0 \to \widehat{C_u} \to C_u[p^\infty] \to \mathbb{Q}_p/\mathbb{Z}_p \to 0$$

over F^0 . The map $t : E^0 B\Sigma_p / I \to F^0$ in 2.1 classifies a degree p cyclic subgroup of C_u over F^0 . However, in this case, C_u has only one cyclic subgroup of degree p, which is compatible with the solution of $w(h, \alpha)$ in F^0 being unique, or equivalently, the map t being the unique map from $E^0 B\Sigma_p / I$ to F^0 , as stated in Proposition 2.4. Moreover, this subgroup is also the unique subgroup of degree p of $\widehat{C}_u = \mathbb{G}_F$ over F^0 . Therefore, in the interpretation of elliptic curves, we can explain the diagram 2.1 as follow.

$$\begin{array}{ccc} C_u & \stackrel{\psi_E^p}{\longmapsto} & C_u/K \\ \downarrow & & \downarrow^t \\ C'_u & \stackrel{\psi_F^p}{\longmapsto} & C'_u/H \end{array}$$

where C'_u is the base change of C_u over F^0 , and H is the degree p cyclic subgroup of C'_u explained above. The maps ψ^p_E and ψ^p_F take the target curves of degree p isogenies starting from C_u over $E^0 B \Sigma_p / I$ and F^0 respectively. And the map ttransform C_u to C'_u and K to H, hence it takes the curve C_u/K to C'_u/H . The element $\psi^p_F(h)$ can be viewed as the Atkin Lehner involution \tilde{h} restricted over F^0 .

In the interpretation of formal groups, we have

where K is the universal degree p subgroup of the formal group \mathbb{G}_E and H is the unique degree p subgroup of \mathbb{G}_F . The groups K and H are the same thing as which appear in the interpretation of elliptic curves.

Remark 2.11. Though the map t takes the universal degree p subgroup K of \mathbb{G}_E to the subgroup H of \mathbb{G}_F , we can not conclude this from the Strickland's Theorem [Str97, Theorem 10.1] directly, due to the discontinuity of t.

3. Connection with Galois Representations

The Cohen ring $\pi_0 L_{K(1)} E_2 = W(k)((u))_p^{\wedge}$ with residue field k((u)) also appears in the *p*-adic galois representation theory over \mathbb{Z}_p .

Let K/\mathbb{Q}_p be a finite extension and K_{∞} be the maximal cyclotomic extension of K.

References

- [AHS04] Matthew Ando, Michael J. Hopkins, and Neil P. Strickland. The sigma orientation is an h-infinity map, 2004.
- [GS99] John Greenlees and Neil P. Strickland. Varieties and local cohomology for chromatic group cohomology rings. *Topology*, 38:1093–1139, 1999.
- [HKR00] Michael Hopkins, Nicholas Kuhn, and Douglas Ravenel. Generalized group characters and complex oriented cohomology theories. Journal of the American Mathematical Society, 13(3):553–594, 2000.
- [KM85] Nicholas M Katz and Barry Mazur. Arithmetic moduli of elliptic curves. Number 108. Princeton University Press, 1985.
- [LT66] Jonathan Lubin and John Tate. Formal moduli for one-parameter formal lie groups. Bulletin de la Société Mathématique de France, 94:49–59, 1966.
- [Rez08] Charles Rezk. Power operations for morava e-theory of height 2 at the prime 2. arXiv preprint arXiv:0812.1320, 2008.
- [Rez09] Charles Rezk. The congruence criterion for power operations in morava e-theory. Homology, Homotopy and Applications, 11(2):327–379, 2009.
- [ST97] Neil P Strickland and Paul R Turner. Rational morava e-theory and dso. Topology, 36(1):137–151, 1997.

12

POWER OPERATIONS OF MORAVA E-THEORY LOCALIZED AT MORAVA K-THEORY 13

- [Str97] Neil P Strickland. Finite subgroups of formal groups. Journal of Pure and Applied Algebra, 121(2):161–208, 1997.
- [Str98] Neil P Strickland. Morava e-theory of symmetric groups. arXiv preprint math/9801125, 1998.
- [Tat67] John T Tate. p-divisible groups. In Proceedings of a Conference on Local Fields: NUFFIC Summer School held at Driebergen (The Netherlands) in 1966, pages 158– 183. Springer, 1967.
- [Van21] Paul VanKoughnett. Localizations of morava e-theory and deformations of formal groups. arXiv preprint arXiv:2110.13869, 2021.
- [Zhu14] Yifei Zhu. The power operation structure on morava. Algebraic & Geometric Topology, 14(2):953–977, 2014.
- [Zhu19] Yifei Zhu. Semistable models for modular curves and power operations for morava etheories of height 2. Advances in Mathematics, 354:106758, 2019.
- [Zhu20] Yifei Zhu. The hecke algebra action and the rezk logarithm on morava e-theory of height
 2. Transactions of the American Mathematical Society, 373(5):3733–3764, 2020.

SOUTHERN UNIVERSITY OF SCIENCE & TECHNOLOGY, SHENZHEN, CHINA Current address: Department of Mathematics Email address: 12131236@mail.sustech.edu.cn