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ABSTRACT. We calculate K (n — 1)-localized Ey, theory for symmetric groups,
deduce the same conclusions as Strickland and find an interpretation of the
total power operation 1/); in terms of augmented deformations. Then we spec-
ify our calculation to the n = 2 case. We calculate an explicit formula for 1/1%
using the formula of 1/;%, and explain connections between these computations
and elliptic curves.
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1. K(n —1)-LOCALIZED E-THEORY FOR SYMMETRIC GROUPS

Let E be the Morava E-theory associated to a height n formal group over a field
k, and F be the K(n — 1)-localization of E. The coeflicient ring

F* =W (k) (un-1)p [us, ., wn—2] 0]

is a Noetherian complete local ring with the maximal ideal (p,u1,...,up—2). It
satisfies the conditions in [HKRO0, Section 1.3], in particular, p~'F* # 0 by direct
computation.

In this section, we calculate the ring F* BY;, and F*BXYy /I following the proce-
dure in [Str98] and give an interpretation of the total power operation ¥r in terms
of subgroups of a certain formal group.
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2 YIFAN WU

1.1. Calculations of F*BY;, and F*BY;/I.

Theorem 1.1. FYBY;, is a Noetherian local ring and a free module over FO of
rank d(n — 1, k), which is defined to be the number of isomorphism classes of order
k sets with an action of Zg_l.

Proposition 1.2. F*BY) is finitely generated over F™*.

Proof. This is a consequence of [GS99, Corollary 4.4]. We need to verify F is
admissible in the sense of [GS99, Definition 2.1]. E is Noetherian and both lo-
calization and completion preserve Noetherianess. Hence F© is Noetherian and all
other conditions are satisfied automatically. [l

Proposition 1.3. F*BY; is free over F'*, concentrated in even degrees.

Proof. From [Str98, Proposition 3.6], we know that E*BG is concentrated in even

degrees. Let u; ', E be the homotopy colimit of - -- —— E "% E — ... where
Up—1 is the corresponding element in EY and let u;ilE/(p,ul, ..., Up—2) be the

cofiber, denoted by K,,, ,.
We claim that K; _ BYj is concentrated in even degrees and free. First (u; ', E)*BYy
is concentrated in even degrees for the E*BY; being so. Consider the cofibration

up, ' B S u B =yt E/(p)

which induces a long exact sequence of cohomology groups.

0 (u, ' E/p)*"1BY,

M//)

(u; ' E)"BY), — (u,,E)*"B%} (u; ' E/p)*" B,

Still from [Str98, Proposition 3.6], the element p acts regularly on E°V** BY, hence
also regular on (u;ilE)e"enBZk. Therefore multiplication by p is injective, which
implies (u,*,E/p)*BX}), concentrated in even degrees, then by induction. Since
T Ky, , is a graded field k((u,—1))[u], K _ BYj is automatically free.

Now let F; = F/(p,u1,...,u;—1), and let Fy = F. By construction, we have
Fn_1 = K,, ,. We will show that if F;"BY} is free and concentrated in even
degrees, the same is true for 1 — 1 as well. Again, there is a long exact sequence of
cohomology groups

F \BYy — Ff BY, — FBYy
obtained from the cofibration
F;_4 i) F,_1 — F;.

Each F} BY;, is finitely generated by Proposition[I.2} Since F}* BY;, is concentrated
in even degrees, multiplying u; on FZ-O_deEk is a surjective. Hence by Nakayama’s
lemma, FP44 BY; = 0. From this, we know the action of u; on Ff¥$"BY), is regular,

and F} | BYy/u; = FBY), which implies that F}* ; BY is a free F* module. [

Proof of Theorem 1.1. Applying [HKRO00, Theorem C], we have the rank of p~! F'* BY),
over p~1F* is just d(n—1,k). By Proposition this rank must equal to the rank
of F*BY;, over F'*. O
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Proposition 1.4. The ring F°BY;/I =0 for k # p™ and R, := F'BY,n /I is a
free module over F° of rank d(n—1,m), where I is the transfer ideal and d(n—1,m)
denotes the number of lattices of index p™ in Z7~!.

Proof. For the first sentence, there is a standard argument in [Str98, Lemma 8.10].
For the second, using the method in [ST97] we see that L(DS) := [[ L& po F'BYy
is a Hopf ring, which can be identified with the ring of functions F(B, L), where L
is a ring extension of F° with p~! and all roots of the p-series of the formal group
law over F° added and B is the Burnside semiring.

The x—indecomposables IndL(DS°) = [[L ®po FOBY}, /I is identified with
F(L, L), where L is the set if all lattices in Zp~" and I}, is the transfer. Hence we
have an isomorphism L @ po FOBY /I}, = F(Lg, L), with Lj, being the set of such
lattices of index k. This implies the rank of R, over FY is d(n — 1,m). O

1.2. Modular interpretation of ¢/%.. Let Gg and G be the formal groups over

Spf(E®) and Spf(F°) respectively. In [Str98, Section 9], the scheme Spf(E°BY. « /1)

is identified with the subgroup scheme Sub,,, (G ) [Str97, Theorem 10.1] over Spf(E?).
The same procedure can be carried through with E replaced by F' without harm.

Proposition 1.5. There is a canonical isomorphism Spf(F°BY,m /1) — Sub,,(GF).
That is, the ring FOBEpm /1 classifies degree p™ subgroups of Gp.

Proof. There is a canonical map from Ogyy,,, (Gx) to F OBEpm /I as constructed in
[Str98, Proposition 9.1]. Note that, these two rings has the same rank over F°. So
we proceed as [Str98, Theorem 9.2], by showing

k(un-1)) @0 Osup,, (@) = F((Un-1)) @po FOBEP’"/I

is injective. The key ingredient here is to show b,, = cgf:_lfl)/(pil) # 0 in
k(un-1)) ®po FOBY,m, where c,m = e(Vpm — 1) is the Euler class of represen-
tation V,m — 1 in FYBY,m and V,m is the standard complex representation of 3,m.
To accomplish this, we make a comparison between E°BY;, and F'BY,,.

Let a,, = c,(},’f‘”/(”‘” € EOBEpm. It has been shown that a.,, # 0 mod

(p,u1, ..., up—1) [Str98, Theorem 3.2]. Consider the diagram

E°BS,m

|

FOBEpm I— k((un_l)) ®F0 FOBEpm = Kgn_lBEpm

To show b,,, # 0 in the right hand side, it suffices to show the image of a,,, in the right
corner is not zero. Since u,_1 acts regularly on E°BY,m /(p,u1,. .., u,—2), we have
am # 0 in u,;ilEOszk. Otherwise, u!,_a,, = 0 implies a,, € (p,u1,...,uy_2).It
follows easily that a,, # 0 mod (p,us,...,u,_2) in u,* E°BY,m. That is

am #0 € u, | E°BY i /(pua, ... up—2) = K) _ BS,m.

u

The rest follows [Str98, Theorem 9.2]. O

Remark 1.6. We can not obtain this result directly from [Str97, Theorem 10.1]
which asserts that

Spf F? gyt o Sub (Gg) = Sub,, (Spf F° Xgppo Gg) = Sub,, (Gr).
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The failure of this equation is because the map E° — F© is not continuous.
In order to figure out how the total power operation
Y FY — F'BY, /1

interacts with the modular interpretation of FOBY,/I, we shall recall some con-
structions from [AHS04, Section 3].
Let Y denote the function spectrum F(CP*, F'), we have

Y = FOCP>™ = F°[x]

which is a complete local Noetherian ring, with maximal ideal (p,u1, ..., Up—2, )
and the canonical map m9gF — mgY is continuous with respect to their maximal
ideal topology.

Proposition 1.7. The ring YOBZP/J is free over Y and equal to YO® po FOBZP/I,
where I and J are transfer ideals respectively.

Proof. For each k, we have
Y*BY, = [ BYy, F(CP™, F)] = [EX(BXy ACP™),F| = F*(BX; NCP™).
By the Atiyah Hirzebruch spectral sequence, we have
EY? = HP(CP*,F1BY}) = YPTIBY,
Since F* BY is concentrated in even degrees, we conclude that
Y*BY, =YY" ®@p- F*BY.
It follows that Y° ® go I = J, and hence
Y°BY,/J =Y ®po F'BY,/I.
which completes the proof. O

In the language of algebraic geometry, SpfY" = G and the above proposition
can be summarized as the pullback diagram.

Spf(YOBEp/J) Zi*GF GF

| |

Spf(F°BY, /1) Spf FO

Together with the naturality of the total power operation:

v
1*Gp r Gr

L,

Spf(FOBS,/T) — "+ Spt O

we obtain a map ¢35, 1 i"Gp — (¢¥%)*Gr over the ring FUBY, /I, as indicated in
the diagram.
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Gr

WE)"
Spf(F°BY,/I) — Spf FY

Proposition 1.8. The isogeny 3. : i*Gp — (¢Y%)*Gp is of degree p over
F'BY, /1, with kernel the universal degree p subgroup K of Gg over F'BY,/I.

Proof. Choosing a coordinate x on Gp, 13 sends z to 2P in Y°BY,/J = O,
modulo maximal ideal of Y. This follows from
n
7TOY &) 7T0YBE; ﬂ 7TOY
sending z to zP. Since (¢%.)*(z) = x, we conclude that w’}*,/F is of degree p.
Therefore the kernel of 3, /F is of rank p.

To show the kernel is precisely the universal degree p subgroup K of Gg over
FOBY, /I, we need to recall the construction of K from [Str98, Proposition 9.1](in
which K is denoted by Hj). Let V), be the standard permutation representation
of ¥,. There is a divisor D(V},) of degree p over F°BY,, whose base change to
F'BY, /I is K. Let A be a transitive abelian p subgroup of ¥,, we have a compo-
sition of maps

Level(A*,Gr) — Hom(A*,Gr) = Spf F’BA — Spf F'BY,,.
The divisor D(V,) becomes a subgroup divisor X,ea+[¢(a)] with ¢ the universal

level-A* structure of Gr on Level(A*, Gr)(See [AHS04) Section 3] for definition).
It is claimed in [Str98, Proposition 9.1] that the map

Level(A*,Gr) — Spf F'BY,,

factors through Spf FOBY,,/I and the union of the images of these maps for all
such A is actually Spf F°BY.,/I. Hence it is sufficient to show the base change of
ker i3, - to Level(A™, Gr) is Zaea-[¢(a)]-

Now Let D(A) = OLevel(a*,61), the following diagram

/ U \
H FOfA —_— DﬁA)

—» By, —— F'BY%,/I

\w’;/

implies the composition of the total power operation 1%, and the dashed arrow
is % (See [AHS04, Definition 3.9]). Hence after base change to Level(A*, Gr), the

map vy, becomes wZ/F [AHS04, diagram 3.14]. According to [AHS04, Proposi-
tion 3.21], the kernel of wz//F is precisely ¢[A] = Y,ca-[¢(a)]. O
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1.3. Augmented deformations. In this section, we combine our analysis about
FOBEP /I and the modular interpretation of F° in terms of augmented deforma-
tions. Recall that there is a formal group Gz over F°, which is the base change
of the universal deformation Gg. Let G% be the special fiber of Gg, which is the
base change of G over the residue field k((u,_1)) of FY.

The formal group GY% has height n — 1 over k((u,—1)). At first glance, one
would like to construct the deformation theory of G% as [LT66] does. However,
the problem arises immediately for the field k((u,—1)) being imperfect. A way to
avoid the imperfectness is the treatment stated in [Van2I]. We shall recall these
constructions.

Definition 1.9. An augmented deformation of a formal group H over k((u,—1))
consists of a triple (K/R, i, o) where

e R is a complete local ring and K is a formal group over R,
e A local homomorphism i : A — R fits into the commutative diagram

A———>R

l l

E(tn_1) —— R/m

e and an isomorphism « : H ®i« y B/m=K&g R/m,

Unp

where A = W(k)(un—1)); is a Cohen ring with residue field k((u,—1)).

Theorem 1.10 ([Van21], Theorem 1.1). The ring F° classifies augmented defor-
mations of G%. To be precise, let Def?}‘ég(R) denote the groupoid of augmented
F

deformations of G% together with isomorphisms. Then we have
Def;‘:f(R) = Maps,,,(F°, R).

In particular, this implies the moduli problem of classifying augmented deformation
is discrete.

Proof. This is simply a consequence of [LT66]. Suppose T' is a height n formal
group over a field k, with k a residue field of a complete local A algebra. The
functor Defl’i‘ : CLN4 — Groupoids from the category of complete local Noetherian
A algebras to groupoids which sends R to the groupoid of deformations of I' over
R is discrete and corepresented by the ring Afuy, ..., un—1].

Note that for any R € CLN, with the diagram

l |

E((un—1)) —— R/m

there is a continuous map from A to R, which lifts i [Van21l, Corollary 2.9]. There-
fore the ring R which carries a deformation of G% is automatically a A algebra.
Thus we have

Defgg (R) = Defgo (R) = Defg®(R).

Applying the Lubin-Tate’s theorem, we find that the functor Defé% is corepresented
by the ring Afus, ..., u,_»], which is just F°. O
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Theorem 1.11. The ring FOBY,m /I is free over F° of rank d(m,n —1). It
classifies augmented deformations of G% together with a subgroup of degree p™.

Maps,q,(FOBE,m /I, R) = {(K/R, H)}

To be precise, for any complete local ring R, there is a bijection between the set of
continuous maps from FOBY,m /I to R and the set of all pairs (K/R, H), where K
is an augmented deformations of G% and H is a degree p™ subgroup of K.

Equivalently, FOBY,m /I classifies augmented deformations of m/th Frobenius
[Rez09l Section 11.3], with the universal example

defined in the Proposition [I.8.
Proof. Combines Proposition [I.7] and Theorem O

2. AN EXPLICIT CALCULATION ON THE n = 2 CASE
Let E be a Morava E-theory of height 2 over the field F,, with
E* = W (Fp)[u][u™].
Let F be the K (1) localization of E, whose coefficients ring is

F* =W (F,)(uw)p[u].

Let Gg and G be the formal groups over E° and F° respectively.
In this section, we give an explicit calculation of the additive total power oper-
ation 9% in terms of the expression of ¢, for the n = 2 case.

2.1. The formula for ¢%.. The naturality of the total power operations gives a
diagram:

E° "t poBy /1

(2.1) | |

FO " OBy, )] = FO
where I and J are the corresponding transfer ideals. The equality on the right

corner is because the formal group Gr is of height 1, hence F °Bx.,/J is free of
rank d(1,1) =1 over F°.

Remark 2.1. From now on, we will use h instead of uy in E* and F*. This is
because when height is 2, the ring E° can be viewed as the place where the universal
deformation of a certain supersingular elliptic curve is defined. The letter h here
stands for the Hasse invariant for it being a lift of Hasse invariant.

The map ¢ in the middle is E° linear. To see this, consider the diagram
E°(\"Z! BY; x BY,_;) 25 E°BY, —— E°BY,/I

l |

FO(\/"_! BS, x BS, ;) %5 FOBY, —— FOBY,/J
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The maps in the top row are between E° modules and maps in the bottom can also
be viewed as E° linear maps via E® — F°. Then one can check that the left two
vertical maps are E° linear, which implies ¢ is E° linear as well.

Now we can deduce the explicit expression of 7. via the calculation of ¢%,, which
is summarized in the two theorems below.

Theorem 2.2 ([Zhul9], Theorem A). After choosing a preferred model for E
[Zhul9l Definition 2,23], the ring E°BY,/I can be interpreted as

OB, /I = W(F,)[h,a] fu(h,a)
with
(22) wih @) = (a—p) (a+ (—1P) = (h—p* +(—1)?) a.
Theorem 2.3 ([Zhul9], Theorem B). The image of h under ¢, is

p p
(2.3) Wh(h) =a+ Y o'y weidi,
i=0 =1

where w;’s are defined to be

w; = (1P [(z f 1> + (=07 (IZ))]

and
T—1
T—n,,.N
dir = E (=1 Wo E Wy » Wy,
n=0 mi+-Me_pn=7+1
1<m,<p+1
My _p2>it+1

To determine the image of h € FO = W(F,)((h)); under 4%, it suffices to deter-
mine the image of o in Theorem under the map ¢. Then we have

Yip(h) = to¢p(h)

by the diagram Since ¢ is an EY linear map, this requires us to find the solutions
of w(h,a) in F°.

Proposition 2.4. There is a unique solution o* of w(h, o) in W (F,)((h)); with

-1 )
(24) o =(=1)PTp.p7t 4 (1 + (1)p+1p(p2)) p* - h 73 + lower terms
satisfies
w(h, @) = (@ —p)(a+ (=1)")F = (h = p* + (~1)")a = 0.
Moreover, we have a* = 0 mod p.

Proof. We write w(h, @) as wyy10PT! + wpa? + -+ + wia 4 wo, where wyqq = 1,
wy = _h7 Wo = (_1)p+1p7 and

w; = (—1)PEP=HD Kl f 1> (0 (119)]

for other coefficients.
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Since h is invertible in W (F,)((h));, the equation w(h,a) = 0 implies

a=h"HaPT +wyal + - wea® + wp)

=h" wo + (@t wpaf 2 4 )R

=h " wy + h_?’wgwg + lower terms
Substituting the second equation into itself recursively gives the desired formula for
a* as described in .

This iteration makes sense because the highest term of a* is h™lwy and p|wy.
Hence each substitution only create a lower terms, which is divided by a higher
power of p, than current stage. Hence o* = Y a,h~* and the coefficient ay, satisfies
limy o0 |ax| = 0, which implies o* is indeed an element in W (F,)((h));,.

The uniqueness comes from the following observation. Note that

w(h,a) = a(a? — h) mod p.
This implies w(h, @) has only one solution 0 in the residue field of W (F,)(h))).

_ P
Therefore it also has a unique solution in W (IF,)((h));, which is o*. O

Theorem 2.5. Let F be a K(1)-local Morava E-theory at height 2. The total power
operation . on FO is determined by

P P
(25) V() =a" +) (")) wepadir,
0 T=1

1=

where

—1
ot = (~1)Plp .t 4 <1 + (_1)P+1p(272)> p® - h=2 + lower terms

s the unique solution of
w(h,a) = (@ =p)(a+ (1P — (h = p* + (=1))a
in W (F,) () = F.
The other coefficients w; and d; » are defined in Theorem @
In particular, Y% satisfies the Frobenius congruence, i.e. P5.(h) = h? mod p.

Proof. The formula[2.5]is obtained by assembling Theorem [2.3]and Proposition
The last sentence comes from ¢% = >"?_ w,11dy,» mod p, for a* being zero after
modulo p. Also notice that

w; =0mod p, 1 =0,2,---,p.

Therefore
D
P _ _
P(h) = wridor = doy
T=1
p—1
— p—n, n
= E (=1)P7"w{ E Winy *** Winyy_,
n=0 mi+--Mp_n=p
1<ms<p+1
Mp_n>1
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The only possibility in the last summation is m, = 1, hence
Y (h) = (—1)Pw) = (=1)P(=h)? = h? mod p

Example 2.6. We calculate these formulas for small p.
When p = 2, we have

. —2 -8 96 -
@ ==t o+ or + O 19)

and

— 2 —10
=h T T +O(h™").
When p = 3, we have
. 3 108 162 7857 —6
T T T o)
and 1158 14580
Y3.(h) = h® — 6h? — 96h + 594 — — + 5 + lower terms.

Remark 2.7. In the p = 3 case, this power operation formula is different from
which in [Zhuld4, Section 5.4]. This is because the equation for « in [Zhul4] is not
of the form as but these two equations are equivalent [Zhul9l Remark 2.25].
In the semi-stable model of Morava E-theory [Zhul9, Definition 2.23, Mod.1%], it
is required that Frob? = (—1)?~![p], for instance, [3] in this case. While in [Zhul4],
the model used is Frob® = [3].

Remark 2.8. The formula 2.5 relies on the E., structure on F. In our analysis, we
equipped F' with the F, structure induced from E via localization. However, F’
itself may admit a different E structure. See [Van2ll Section 6].

2.2. Interaction with elliptic curves. In this section, we state how these com-
putations interact with elliptic curves and p-divisible groups.

Suppose C'is a supersingular elliptic curve over a perfect field k£ with characteris-
tic p. The formal group C associated with C is of height 2. Hence we can transport
computations in topology to computations on elliptic curves. This is the initial
idea of all explicit computations of height 2 Morava E theories. Rezk calculates
the p = 2 case [Rez08] and Zhu calculates the p = 3 case [Zhuldl.

To be explicit, let .#n be the moduli stack of elliptic curves equipped with
'y (N) structure, i.e. an N torsion point. Over Z[1/N], the moduli problem of
[['1 (V)] is representable, i.e. .#n/Z[1/n] is a scheme. Choose a supersingular
locus on .#, we can produce a height 2 formal group as stated above. Since C' is
supersinguar, the formal group c equals to the p-divisible group C[p™] of C. By
this, a deformation of C is the same as a deformation of C [p>°], which is equivalent
to a deformation of C' by the Serre-Tate’s theorem [Tat67]. Hence we can construct
a universal deformation C,, of C defined over E, with the formal group 6’; being the
universal deformation of C. Then we construct a corresponding Morava E theory
of height 2 associated with E, which is also called E, via the Landweber exact
functor theorem.
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To calculate E°BY,,/1, it suffices to find the place where the universal degree p
subgroup K of C,, is defined, for then K is also the universal degree p subgroup of
Culp>] = 6‘; This procedure is feasible guaranteed by the moduli problem .#, is
relative representable and hence the simultaneous moduli problem [I'y (V)] x [T'o(p)]
is representable by a scheme .# , [KM85]. In practice, one usually calculates the
coordinates of a point of exact order p to find the explicit expression of E°BY, /I
[Rez08|, [Zhuld], though these calculations are somehow ad hoc for different primes
.

Remark 2.9. Since in general, an elliptic curve will have p + 1 subgroups of degree
p. The moduli scheme .#y ), is of rank p + 1 over .#y, which is compatible with
the rank of EYBY,,/I over EY.

Remark 2.10. Zhu identifies the parameter o which parametrizes subgroups with
a modular form of level [I'g(p)]. He then computes the value of a at cusps of A,
and uses this to derived the general formula of E°BY,/I for arbitrary primes.
[Zhu19]

Recall that the total power operation 9%, : E° — EYBY, /I stands for taking the
target of the universal deformation of Frobenius. It can also be viewed as taking
the target curve of the universal degree p isogeny as explained above.

Let €x be the universal curve of the moduli problem [['1(N) x [[o(N)] over
M p. There is an isogeny WP : €y — %N/%J%p), with %ﬁ,p) the universal degree p
subgroup of ¥, Py the N torsion point:

(v, Po du, 40) > (6n/90, P (o). da, Enlpl/9)) .

Hence it induces an exotic endomorphism of .#x , [KM85, Chapter 11}, [Zhul9,
Section 2.3], so called the Atkin Lehner involution. For a supersingular elliptic
curve S, this Atkin Lehner involution takes S to itself. Therefore it restricts to
an endomorphism of the formal neighborhood around the supersingular locus. The
previous argument implies that the total power operation is

Yh B — E'BY, /I % E°BY, /I,

where w is the restriction of the Atkin Lehner involution to the formal neighborhood
of the given supersingular locus. It is determined by ¢k (h) = h, where h is the
image of h under the Atkin Lehner involution. The calculations along these ideas
can be found in [Zhu20, Example 2.14].

Over FO, the p-divisible group G becomes an extension

0—Gr=G% —Grp—Q,/Z, =0
where G, is the connected component of Gg over FC. Or equivalently
0 C,— Culp™] = Qp/Z, — 0

over FO. The map ¢ : EOBZ,,/I — F%in classifies a degree p cyclic subgroup
of C,, over F°. However, in this case, C,, has only one cyclic subgroup of degree p,
which is compatible with the solution of w(h, ) in F” being unique, or equivalently,
the map t being the unique map from E°BY,/I to F°, as stated in Proposition
Moreover, this subgroup is also the unique subgroup of degree p of C/‘; =Gp
over FY.
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Therefore, in the interpretation of elliptic curves, we can explain the diagram
2.1 as follow.

Co 2 Oy /K

l I

!/ ¢? !

Cl —— Cl/H
where C! is the base change of C,, over F?, and H is the degree p cyclic subgroup
of C!, explained above. The maps ¢}, and ¢}, take the target curves of degree
p isogenies starting from C, over E°BY,,/I and FU respectively. And the map ¢
transform C,, to C}, and K to H, hence it takes the curve C,/K to C]/H. The
element ¢7.(h) can be viewed as the Atkin Lehner involution I restricted over FO.

In the interpretation of formal groups, we have

v N
Gp —— (V)" Gp =Gp/K

| I

wP .
where K is the universal degree p subgroup of the formal group Gg and H is the
unique degree p subgroup of Gg. The groups K and H are the same thing as which
appear in the interpretation of elliptic curves.

Remark 2.11. Though the map ¢ takes the universal degree p subgroup K of Gg
to the subgroup H of Gg, we can not conclude this from the Strickland’s Theorem
[Str97, Theorem 10.1] directly, due to the discontinuity of ¢.

3. CONNECTION WITH (GALOIS REPRESENTATIONS

The Cohen ring moLg (1) E2 = W (k)((u)), with residue field k((u)) also appears
in the p-adic galois representation theory over Z,.

Let K/Q, be a finite extension and K, be the maximal cyclotomic extension of
K.
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