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POWER OPERATIONS OF MORAVA E-THEORY LOCALIZED

AT MORAVA K-THEORY

YIFAN WU

Abstract. We calculate K(n− 1)-localized En theory for symmetric groups,

deduce the same conclusions as Strickland and find an interpretation of the
total power operation ψp

F in terms of augmented deformations. Then we spec-

ify our calculation to the n = 2 case. We calculate an explicit formula for ψp
F

using the formula of ψp
E , and explain connections between these computations

and elliptic curves.
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1. K(n− 1)-localized E-theory for symmetric groups

Let E be the Morava E-theory associated to a height n formal group over a field
k, and F be the K(n− 1)-localization of E. The coefficient ring

F ∗ =W (k)((un−1))
∧
p [[u1, . . . , un−2]][u

±]

is a Noetherian complete local ring with the maximal ideal (p, u1, . . . , un−2). It
satisfies the conditions in [HKR00, Section 1.3], in particular, p−1F ∗ ̸= 0 by direct
computation.

In this section, we calculate the ring F ∗BΣk and F ∗BΣk/I following the proce-
dure in [Str98] and give an interpretation of the total power operation ψF in terms
of subgroups of a certain formal group.
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1.1. Calculations of F ∗BΣk and F ∗BΣk/I.

Theorem 1.1. F 0BΣk is a Noetherian local ring and a free module over F 0 of
rank d(n− 1, k), which is defined to be the number of isomorphism classes of order
k sets with an action of Zn−1

p .

Proposition 1.2. F ∗BΣk is finitely generated over F ∗.

Proof. This is a consequence of [GS99, Corollary 4.4]. We need to verify F is
admissible in the sense of [GS99, Definition 2.1]. E0 is Noetherian and both lo-
calization and completion preserve Noetherianess. Hence F 0 is Noetherian and all
other conditions are satisfied automatically. □

Proposition 1.3. F ∗BΣk is free over F ∗, concentrated in even degrees.

Proof. From [Str98, Proposition 3.6], we know that E∗BG is concentrated in even

degrees. Let u−1
n−1E be the homotopy colimit of · · · un−1−−−→ E

un−1−−−→ E → · · · , where
un−1 is the corresponding element in E0 and let u−1

n−1E/(p, u1, . . . , un−2) be the
cofiber, denoted by Kun−1

.

We claim thatK∗
un−1

BΣk is concentrated in even degrees and free. First (u−1
n−1E)∗BΣk

is concentrated in even degrees for the E∗BΣk being so. Consider the cofibration

u−1
n−1E

p−→ u−1
n−1E → u−1

n−1E/(p)

which induces a long exact sequence of cohomology groups.

0 (u−1
n−1E/p)

2n−1BΣk

(u−1
n−1E)2nBΣk (u−1

n−1E)2nBΣk (u−1
n−1E/p)

2nBΣk
p

Still from [Str98, Proposition 3.6], the element p acts regularly on EevenBΣk, hence
also regular on (u−1

n−1E)evenBΣk. Therefore multiplication by p is injective, which

implies (u−1
n−1E/p)

∗BΣk concentrated in even degrees, then by induction. Since
π∗Kun−1

is a graded field k((un−1))[u
±], K∗

un−1
BΣk is automatically free.

Now let Fi = F/(p, u1, . . . , ui−1), and let F0 = F . By construction, we have
Fn−1 = Kun−1

. We will show that if F ∗
i BΣk is free and concentrated in even

degrees, the same is true for i− 1 as well. Again, there is a long exact sequence of
cohomology groups

F ∗
i−1BΣk → F ∗

i−1BΣk → F ∗
i BΣk

obtained from the cofibration

Fi−1
ui−→ Fi−1 → Fi.

Each F ∗
i BΣk is finitely generated by Proposition 1.2. Since F ∗

i BΣk is concentrated
in even degrees, multiplying ui on F

odd
i−1BΣk is a surjective. Hence by Nakayama’s

lemma, F odd
i−1BΣk = 0. From this, we know the action of ui on F

even
i−1 BΣk is regular,

and F ∗
i−1BΣk/ui = F ∗

i BΣk which implies that F ∗
i−1BΣk is a free F ∗ module. □

Proof of Theorem 1.1. Applying [HKR00, Theorem C], we have the rank of p−1F ∗BΣk
over p−1F ∗ is just d(n−1, k). By Proposition 1.3, this rank must equal to the rank
of F ∗BΣk over F ∗. □
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Proposition 1.4. The ring F 0BΣk/I = 0 for k ̸= pm and Rm := F 0BΣpm/I is a

free module over F 0 of rank d(n−1,m), where I is the transfer ideal and d(n−1,m)
denotes the number of lattices of index pm in Zn−1

p .

Proof. For the first sentence, there is a standard argument in [Str98, Lemma 8.10].
For the second, using the method in [ST97] we see that L(DS0) :=

∏
L⊗F 0 F 0BΣk

is a Hopf ring, which can be identified with the ring of functions F (B, L), where L
is a ring extension of F 0 with p−1 and all roots of the p-series of the formal group
law over F 0 added and B is the Burnside semiring.

The ×−indecomposables IndL(DS0) =
∏
L ⊗F 0 F 0BΣk/Ik is identified with

F (L, L), where L is the set if all lattices in Zn−1
p and Ik is the transfer. Hence we

have an isomorphism L⊗F 0 F 0BΣk/Ik ∼= F (Lk, L), with Lk being the set of such
lattices of index k. This implies the rank of Rm over F 0 is d(n− 1,m). □

1.2. Modular interpretation of ψpF . Let GE and GF be the formal groups over
Spf(E0) and Spf(F 0) respectively. In [Str98, Section 9], the scheme Spf(E0BΣpk/I)

is identified with the subgroup scheme Subm(GE) [Str97, Theorem 10.1] over Spf(E0).
The same procedure can be carried through with E replaced by F without harm.

Proposition 1.5. There is a canonical isomorphism Spf(F 0BΣpm/I) → Subm(GF ).
That is, the ring F 0BΣpm/I classifies degree pm subgroups of GF .

Proof. There is a canonical map from OSubm(GF ) to F 0BΣpm/I as constructed in

[Str98, Proposition 9.1]. Note that, these two rings has the same rank over F 0. So
we proceed as [Str98, Theorem 9.2], by showing

k((un−1))⊗F 0 OSubm(GF ) → k((un−1))⊗F 0 F 0BΣpm/I

is injective. The key ingredient here is to show bm = c
(pn−1−1)/(p−1)
pm ̸= 0 in

k((un−1)) ⊗F 0 F 0BΣpm , where cpm = e(Vpm − 1) is the Euler class of represen-
tation Vpm −1 in F 0BΣpm and Vpm is the standard complex representation of Σpm .
To accomplish this, we make a comparison between E0BΣk and F 0BΣk.

Let am = c
(pn−1)/(p−1)
pm ∈ E0BΣpm . It has been shown that am ̸= 0 mod

(p, u1, . . . , un−1) [Str98, Theorem 3.2]. Consider the diagram

E0BΣpm

F 0BΣpm k((un−1))⊗F 0 F 0BΣpm = K0
un−1

BΣpm

To show bm ̸= 0 in the right hand side, it suffices to show the image of am in the right
corner is not zero. Since un−1 acts regularly on E0BΣpm/(p, u1, . . . , un−2), we have

am ̸= 0 in u−1
n−1E

0BΣpk . Otherwise, utn−1am = 0 implies am ∈ (p, u1, . . . , un−2).It

follows easily that am ̸= 0 mod (p, u1, . . . , un−2) in u
−1
n−1E

0BΣpm . That is

am ̸= 0 ∈ u−1
n−1E

0BΣpk/(p, u1, . . . , un−2) = K0
un−1

BΣpm .

The rest follows [Str98, Theorem 9.2]. □

Remark 1.6. We can not obtain this result directly from [Str97, Theorem 10.1]
which asserts that

SpfF 0 ×SpfE0 Subm(GE) = Subm(SpfF 0 ×SpfE0 GE) = Subm(GF ).
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The failure of this equation is because the map E0 → F 0 is not continuous.

In order to figure out how the total power operation

ψpF : F 0 −→ F 0BΣp/I

interacts with the modular interpretation of F 0BΣp/I, we shall recall some con-
structions from [AHS04, Section 3].

Let Y denote the function spectrum F (CP∞, F ), we have

π0Y = F 0CP∞ = F 0[[x]]

which is a complete local Noetherian ring, with maximal ideal (p, u1, . . . , un−2, x)
and the canonical map π0F → π0Y is continuous with respect to their maximal
ideal topology.

Proposition 1.7. The ring Y 0BΣp/J is free over Y 0 and equal to Y 0⊗F 0F 0BΣp/I,
where I and J are transfer ideals respectively.

Proof. For each k, we have

Y ∗BΣk = [Σ∞
+ BΣk, F (CP∞, F )] = [Σ∞

+ (BΣk ∧ CP∞), F ] = F ∗(BΣk ∧ CP∞).

By the Atiyah Hirzebruch spectral sequence, we have

Ep,q2 = Hp(CP∞, F qBΣk) ⇒ Y p+qBΣk

Since F ∗BΣk is concentrated in even degrees, we conclude that

Y ∗BΣk = Y ∗ ⊗F∗ F ∗BΣk.

It follows that Y 0 ⊗F 0 I = J , and hence

Y 0BΣp/J = Y 0 ⊗F 0 F 0BΣp/I.

which completes the proof. □

In the language of algebraic geometry, SpfY 0 = GF and the above proposition
can be summarized as the pullback diagram.

Spf(Y 0BΣp/J) = i∗GF GF

Spf(F 0BΣp/I) SpfF 0

Together with the naturality of the total power operation:

i∗GF GF

Spf(F 0BΣp/I) SpfF 0

ψ∗
Y

ψ∗
F

we obtain a map ψ∗
Y/F : i∗GF → (ψpF )

∗GF over the ring F 0BΣp/I, as indicated in

the diagram.
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i∗GF

(ψpF )
∗GF GF

Spf(F 0BΣp/I) SpfF 0

ψ∗
Y/F

ψ∗
Y

(ψp
F )∗

Proposition 1.8. The isogeny ψ∗
Y/F : i∗GF → (ψpF )

∗GF is of degree p over

F 0BΣp/I, with kernel the universal degree p subgroup K of GF over F 0BΣp/I.

Proof. Choosing a coordinate x on GF , ψ∗
Y sends x to xp in Y 0BΣp/J = Oi∗GF

modulo maximal ideal of Y 0. This follows from

π0Y
Dp−−→ π0Y

BΣ+
p

S0→BΣ+
p−−−−−−→ π0Y

sending x to xp. Since (ψpF )
∗(x) = x, we conclude that ψ∗

Y/F is of degree p.

Therefore the kernel of ψ∗
Y/F is of rank p.

To show the kernel is precisely the universal degree p subgroup K of GF over
F 0BΣp/I, we need to recall the construction of K from [Str98, Proposition 9.1](in
which K is denoted by Hk). Let Vp be the standard permutation representation
of Σp. There is a divisor D(Vp) of degree p over F 0BΣp, whose base change to
F 0BΣp/I is K. Let A be a transitive abelian p subgroup of Σp, we have a compo-
sition of maps

Level(A∗,GF ) → Hom(A∗,GF ) = SpfF 0BA→ SpfF 0BΣp.

The divisor D(Vp) becomes a subgroup divisor Σa∈A∗ [ℓ(a)] with ℓ the universal
level-A∗ structure of GF on Level(A∗,GF )(See [AHS04, Section 3] for definition).
It is claimed in [Str98, Proposition 9.1] that the map

Level(A∗,GF ) → SpfF 0BΣp

factors through SpfF 0BΣp/I and the union of the images of these maps for all
such A is actually SpfF 0BΣp/I. Hence it is sufficient to show the base change of
kerψ∗

Y/F to Level(A∗,GF ) is Σa∈A∗ [ℓ(a)].

Now Let D(A) = OLevel(A∗,GF ), the following diagram

F 0 F 0BA D(A)

F 0 F 0BΣp F 0BΣp/I

DA

ψℓ
F

ψp
F

Dp

implies the composition of the total power operation ψpF and the dashed arrow
is ψℓF (See [AHS04, Definition 3.9]). Hence after base change to Level(A∗,GF ), the
map ψ∗

Y/F becomes ψ
Y/F
ℓ [AHS04, diagram 3.14]. According to [AHS04, Proposi-

tion 3.21], the kernel of ψ
Y/F
ℓ is precisely ℓ[A] = Σa∈A∗ [ℓ(a)]. □
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1.3. Augmented deformations. In this section, we combine our analysis about
F 0BΣp/I and the modular interpretation of F 0 in terms of augmented deforma-
tions. Recall that there is a formal group GF over F 0, which is the base change
of the universal deformation GE . Let G0

F be the special fiber of GF , which is the
base change of GF over the residue field k((un−1)) of F

0.
The formal group G0

F has height n − 1 over k((un−1)). At first glance, one
would like to construct the deformation theory of G0

F as [LT66] does. However,
the problem arises immediately for the field k((un−1)) being imperfect. A way to
avoid the imperfectness is the treatment stated in [Van21]. We shall recall these
constructions.

Definition 1.9. An augmented deformation of a formal group H over k((un−1))
consists of a triple (K/R, i, α) where

• R is a complete local ring and K is a formal group over R,
• A local homomorphism i : Λ → R fits into the commutative diagram

Λ R

k((un−1)) R/m

i

ī

• and an isomorphism α : H⊗ik((un−1))
R/m ≃ K⊗R R/m,

where Λ =W (k)((un−1))
∧
p is a Cohen ring with residue field k((un−1)).

Theorem 1.10 ([Van21], Theorem 1.1). The ring F 0 classifies augmented defor-
mations of G0

F . To be precise, let DefaugG0
F
(R) denote the groupoid of augmented

deformations of G0
F together with isomorphisms. Then we have

DefaugG0
F
(R) = Mapscts(F

0, R).

In particular, this implies the moduli problem of classifying augmented deformation
is discrete.

Proof. This is simply a consequence of [LT66]. Suppose Γ is a height n formal
group over a field k, with k a residue field of a complete local A algebra. The
functor DefAΓ : CLNA → Groupoids from the category of complete local Noetherian
A algebras to groupoids which sends R to the groupoid of deformations of Γ over
R is discrete and corepresented by the ring A[[u1, . . . , un−1]].

Note that for any R ∈ CLN, with the diagram

Λ R

k((un−1)) R/m

i

ī

there is a continuous map from Λ to R, which lifts ī [Van21, Corollary 2.9]. There-
fore the ring R which carries a deformation of G0

F is automatically a Λ algebra.
Thus we have

DefG0
F
(R) = DefΛG0

F
(R) = DefaugG0

F
(R).

Applying the Lubin-Tate’s theorem, we find that the functor DefΛG0
F
is corepresented

by the ring Λ[[u1, . . . , un−2]], which is just F 0. □
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Theorem 1.11. The ring F 0BΣpm/I is free over F 0 of rank d(m,n − 1). It
classifies augmented deformations of G0

F together with a subgroup of degree pm.

Mapscts(F
0BΣpm/I,R) = {(K/R,H)}

To be precise, for any complete local ring R, there is a bijection between the set of
continuous maps from F 0BΣpm/I to R and the set of all pairs (K/R,H), where K
is an augmented deformations of G0

F and H is a degree pm subgroup of K.
Equivalently, F 0BΣpm/I classifies augmented deformations of m′th Frobenius

[Rez09, Section 11.3], with the universal example

ψ∗
Y/F : i∗GF → (ψp

m

F )∗GF

defined in the Proposition 1.8.

Proof. Combines Proposition 1.7, 1.8 and Theorem 1.10 □

2. An explicit Calculation on the n = 2 case

Let E be a Morava E-theory of height 2 over the field Fp, with

E∗ =W (Fp)[[u1]][u±].

Let F be the K(1) localization of E, whose coefficients ring is

F ∗ =W (Fp)((u1))∧p [u±].

Let GE and GF be the formal groups over E0 and F 0 respectively.
In this section, we give an explicit calculation of the additive total power oper-

ation ψpF in terms of the expression of ψpE for the n = 2 case.

2.1. The formula for ψpF . The naturality of the total power operations gives a
diagram:

(2.1)

E0 E0BΣp/I

F 0 F 0BΣp/J F 0

ψp
E

t

ψp
F

where I and J are the corresponding transfer ideals. The equality on the right
corner is because the formal group GF is of height 1, hence F 0BΣp/J is free of
rank d̄(1, 1) = 1 over F 0.

Remark 2.1. From now on, we will use h instead of u1 in E∗ and F ∗. This is
because when height is 2, the ring E0 can be viewed as the place where the universal
deformation of a certain supersingular elliptic curve is defined. The letter h here
stands for the Hasse invariant for it being a lift of Hasse invariant.

The map t in the middle is E0 linear. To see this, consider the diagram

E0(
∨p−1
i=1 BΣi ×BΣp−i) E0BΣp E0BΣp/I

F 0(
∨p−1
i=1 BΣi ×BΣp−i) F 0BΣp F 0BΣp/J

trE

t

trF
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The maps in the top row are between E0 modules and maps in the bottom can also
be viewed as E0 linear maps via E0 → F 0. Then one can check that the left two
vertical maps are E0 linear, which implies t is E0 linear as well.

Now we can deduce the explicit expression of ψpF via the calculation of ψpE , which
is summarized in the two theorems below.

Theorem 2.2 ([Zhu19], Theorem A). After choosing a preferred model for E
[Zhu19, Definition 2,23], the ring E0BΣp/I can be interpreted as

E0BΣp/I =W (Fp)[[h, α]]/w(h, α)

with

(2.2) w(h, α) = (α− p) (α+ (−1)p)
p −

(
h− p2 + (−1)p

)
α.

Theorem 2.3 ([Zhu19], Theorem B). The image of h under ψpE is

(2.3) ψpE(h) = α+

p∑
i=0

αi
p∑
τ=1

wτ+1di,τ ,

where wi’s are defined to be

wi = (−1)p(p−i+1)

[(
p

i− 1

)
+ (−1)p+1p

(
p

i

)]
and

di,τ =

τ−1∑
n=0

(−1)τ−nwn0
∑

m1+···mτ−n=τ+i
1≤ms≤p+1
mτ−n≥i+1

wm1
· · ·wmτ−n

.

To determine the image of h ∈ F 0 =W (Fp)((h))∧p under ψpF , it suffices to deter-
mine the image of α in Theorem 2.2 under the map t. Then we have

ψpF (h) = t ◦ ψpE(h)

by the diagram 2.1. Since t is an E0 linear map, this requires us to find the solutions
of w(h, α) in F 0.

Proposition 2.4. There is a unique solution α∗ of w(h, α) in W (Fp)((h))∧p with

(2.4) α∗ = (−1)p+1p · h−1 +

(
1 + (−1)p+1 p(p− 1)

2

)
p3 · h−3 + lower terms

satisfies

w(h, α) = (α− p)(α+ (−1)p)p − (h− p2 + (−1)p)α = 0.

Moreover, we have α∗ = 0 mod p.

Proof. We write w(h, α) as wp+1α
p+1 + wpα

p + · · · + w1α + w0, where wp+1 = 1,
w1 = −h, w0 = (−1)p+1p, and

wi = (−1)p(p−i+1)

[(
p

i− 1

)
+ (−1)p+1p

(
p

i

)]
for other coefficients.
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Since h is invertible in W (Fp)((h))∧p , the equation w(h, α) = 0 implies

α = h−1(αp+1 + wpα
p + · · ·w2α

2 + w0)

= h−1w0 + α2(αp−1 + wpα
p−2 + · · ·+ w2)h

−1

= h−1w0 + h−3w2
0w2 + lower terms

Substituting the second equation into itself recursively gives the desired formula for
α∗ as described in .

This iteration makes sense because the highest term of α∗ is h−1w0 and p|w0.
Hence each substitution only create a lower terms, which is divided by a higher
power of p, than current stage. Hence α∗ = Σkakh

−k and the coefficient ak satisfies
limk→∞ |ak| = 0, which implies α∗ is indeed an element in W (Fp)((h))∧p .

The uniqueness comes from the following observation. Note that

w(h, α) = α(αp − h) mod p.

This implies w(h, α) has only one solution 0 in the residue field of W (Fp)((h))∧p .
Therefore it also has a unique solution in W (Fp)((h))∧p , which is α∗. □

Theorem 2.5. Let F be a K(1)-local Morava E-theory at height 2. The total power
operation ψpF on F 0 is determined by

(2.5) ψpF (h) = α∗ +

p∑
i=0

(α∗)i
p∑
τ=1

wτ+1di,τ ,

where

α∗ = (−1)p+1p · h−1 +

(
1 + (−1)p+1 p(p− 1)

2

)
p3 · h−3 + lower terms

is the unique solution of

w(h, α) = (α− p)(α+ (−1)p)p − (h− p2 + (−1)p)α

in W (Fp)((h))∧p ∼= F 0.
The other coefficients wi and di,τ are defined in Theorem 2.3.
In particular, ψpF satisfies the Frobenius congruence, i.e. ψpF (h) ≡ hp mod p.

Proof. The formula 2.5 is obtained by assembling Theorem 2.3 and Proposition 2.4.
The last sentence comes from ψpF ≡

∑p
τ=1 wτ+1d0,τ mod p, for α∗ being zero after

modulo p. Also notice that

wi ≡ 0 mod p, i = 0, 2, · · · , p.
Therefore

ψpF (h) ≡
p∑
τ=1

wτ+1d0,τ ≡ d0,p

≡
p−1∑
n=0

(−1)p−nwn0
∑

m1+···mp−n=p
1≤ms≤p+1
mp−n≥1

wm1
· · ·wmp−n

≡ (−1)p
∑

m1+···mp=p
1≤ms≤p+1
mp≥1

wm1
· · ·wmp

.
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The only possibility in the last summation is ms = 1, hence

ψpF (h) ≡ (−1)pwp1 = (−1)p(−h)p = hp mod p

. □

Example 2.6. We calculate these formulas for small p.
When p = 2, we have

α∗ =
−2

h
+

−8

h4
+

96

h7
+O(h−10)

and

ψ2
F (h) = h2 + α∗ − h · (α∗)2

= h2 − 6

h
− 40

h4
− 544

h7
+O(h−10).

When p = 3, we have

α∗ =
3

h
+

108

h3
− 162

h4
+

7857

h5
+O(h−6)

and

ψ3
F (h) = h3 − 6h2 − 96h+ 594− 1158

h
+

14580

h2
+ lower terms.

Remark 2.7. In the p = 3 case, this power operation formula is different from
which in [Zhu14, Section 5.4]. This is because the equation for α in [Zhu14] is not
of the form as 2.2, but these two equations are equivalent [Zhu19, Remark 2.25].
In the semi-stable model of Morava E-theory [Zhu19, Definition 2.23, Mod.1+], it
is required that Frob2 = (−1)p−1[p], for instance, [3] in this case. While in [Zhu14],
the model used is Frob2 = [−3].

Remark 2.8. The formula 2.5 relies on the E∞ structure on F . In our analysis, we
equipped F with the E∞ structure induced from E via localization. However, F
itself may admit a different E∞ structure. See [Van21, Section 6].

2.2. Interaction with elliptic curves. In this section, we state how these com-
putations interact with elliptic curves and p-divisible groups.

Suppose C is a supersingular elliptic curve over a perfect field k with characteris-

tic p. The formal group Ĉ associated with C is of height 2. Hence we can transport
computations in topology to computations on elliptic curves. This is the initial
idea of all explicit computations of height 2 Morava E theories. Rezk calculates
the p = 2 case [Rez08] and Zhu calculates the p = 3 case [Zhu14].

To be explicit, let MN be the moduli stack of elliptic curves equipped with
Γ1(N) structure, i.e. an N torsion point. Over Z[1/N ], the moduli problem of
[Γ1(N)] is representable, i.e. MN/Z[1/n] is a scheme. Choose a supersingular
locus on MN , we can produce a height 2 formal group as stated above. Since C is

supersinguar, the formal group Ĉ equals to the p-divisible group C[p∞] of C. By

this, a deformation of Ĉ is the same as a deformation of C[p∞], which is equivalent
to a deformation of C by the Serre-Tate’s theorem [Tat67]. Hence we can construct

a universal deformation Cu of C defined over E, with the formal group Ĉu being the

universal deformation of Ĉ. Then we construct a corresponding Morava E theory
of height 2 associated with E, which is also called E, via the Landweber exact
functor theorem.
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To calculate E0BΣp/I, it suffices to find the place where the universal degree p
subgroup K of Cu is defined, for then K is also the universal degree p subgroup of

Cu[p
∞] = Ĉu. This procedure is feasible guaranteed by the moduli problem Mp is

relative representable and hence the simultaneous moduli problem [Γ1(N)]× [Γ0(p)]
is representable by a scheme MN,p [KM85]. In practice, one usually calculates the
coordinates of a point of exact order p to find the explicit expression of E0BΣp/I
[Rez08, Zhu14], though these calculations are somehow ad hoc for different primes
p.

Remark 2.9. Since in general, an elliptic curve will have p+ 1 subgroups of degree
p. The moduli scheme MN,p is of rank p + 1 over MN , which is compatible with
the rank of E0BΣp/I over E0.

Remark 2.10. Zhu identifies the parameter α which parametrizes subgroups with
a modular form of level [Γ0(p)]. He then computes the value of α at cusps of MN,p

and uses this to derived the general formula 2.2 of E0BΣp/I for arbitrary primes.
[Zhu19]

Recall that the total power operation ψpE : E0 → E0BΣp/I stands for taking the
target of the universal deformation of Frobenius. It can also be viewed as taking
the target curve of the universal degree p isogeny as explained above.

Let CN be the universal curve of the moduli problem [Γ1(N) × [Γ0(N)] over

MN,p. There is an isogeny Ψp : CN → CN/G
(p)
N , with G

(p)
N the universal degree p

subgroup of CN , P0 the N torsion point:(
CN , P0, du, G

(p)
N

)
7→

(
CN/G

(p)
N , Ψp(P0), dũ, CN [p]/G

(p)
N

)
.

Hence it induces an exotic endomorphism of MN,p [KM85, Chapter 11], [Zhu19,
Section 2.3], so called the Atkin Lehner involution. For a supersingular elliptic
curve S, this Atkin Lehner involution takes S to itself. Therefore it restricts to
an endomorphism of the formal neighborhood around the supersingular locus. The
previous argument implies that the total power operation is

ψpE : E0 ↪→ E0BΣp/I
ω−→ E0BΣp/I,

where ω is the restriction of the Atkin Lehner involution to the formal neighborhood

of the given supersingular locus. It is determined by ψpE(h) = h̃, where h̃ is the
image of h under the Atkin Lehner involution. The calculations along these ideas
can be found in [Zhu20, Example 2.14].

Over F 0, the p-divisible group GE becomes an extension

0 → GF = G0
E → GE → Qp/Zp → 0

where G0
E is the connected component of GE over F 0. Or equivalently

0 → Ĉu → Cu[p
∞] → Qp/Zp → 0

over F 0. The map t : E0BΣp/I → F 0 in 2.1 classifies a degree p cyclic subgroup
of Cu over F 0. However, in this case, Cu has only one cyclic subgroup of degree p,
which is compatible with the solution of w(h, α) in F 0 being unique, or equivalently,
the map t being the unique map from E0BΣp/I to F 0, as stated in Proposition

2.4. Moreover, this subgroup is also the unique subgroup of degree p of Ĉu = GF
over F 0.
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Therefore, in the interpretation of elliptic curves, we can explain the diagram
2.1 as follow.

Cu Cu/K

C ′
u C ′

u/H

ψp
E

t

ψp
F

where C ′
u is the base change of Cu over F 0, and H is the degree p cyclic subgroup

of C ′
u explained above. The maps ψpE and ψpF take the target curves of degree

p isogenies starting from Cu over E0BΣp/I and F 0 respectively. And the map t
transform Cu to C ′

u and K to H, hence it takes the curve Cu/K to C ′
u/H. The

element ψpF (h) can be viewed as the Atkin Lehner involution h̃ restricted over F 0.
In the interpretation of formal groups, we have

GE (ψpE)
∗GE = GE/K

GF (ψpF )
∗GF = GF /H

ψp
E

t

ψp
F

where K is the universal degree p subgroup of the formal group GE and H is the
unique degree p subgroup of GF . The groups K and H are the same thing as which
appear in the interpretation of elliptic curves.

Remark 2.11. Though the map t takes the universal degree p subgroup K of GE
to the subgroup H of GF , we can not conclude this from the Strickland’s Theorem
[Str97, Theorem 10.1] directly, due to the discontinuity of t.

3. Connection with Galois Representations

The Cohen ring π0LK(1)E2 = W (k)((u))∧p with residue field k((u)) also appears
in the p-adic galois representation theory over Zp.

Let K/Qp be a finite extension and K∞ be the maximal cyclotomic extension of
K.
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