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Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes

Formal groups

A scheme X means a representable functor from Rings to Sets,
that is
X = Rings(A, —) = Spec(A)

for some A. The ring of functions is defined to be
Ox = Al(X),

which is all maps from X to Al

5/27



Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes

Formal groups

A scheme X means a representable functor from Rings to Sets,
that is
X = Rings(A, —) = Spec(A)

for some A. The ring of functions is defined to be
Ox = Al(X),
which is all maps from X to Al

The category of schemes has limits,

lim Spec(A;) = Spec(colim A;)
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Formal Schemes and Formal Groups Category of formal schemes

A formal scheme X
By definition, X(R)

OX = [XaAl]

Solid formal schemes
Formal groups

is a filtered colimit of some schemes X;.
= COlim,' X,(R)

= [colim X;, A'] = lim[X;, AY] = lim Ox..
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Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes

Formal groups

A formal scheme X is a filtered colimit of some schemes X;.
By definition, X(R) = colim; Xi(R).
Ox = [X, Al] = [colim X;, A'] = lim[X;, Al] = lim Ox..

In general, for two formal schemes X = colim X;, Y = colim; Y},
we define

[X, Y] = [colim X;, colim Y}| = IiEn[X,-, Coﬁim Yil = Iilm co}im[X,-, Yjl.
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Let X be the category of schemes, and X of formal schemes.
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Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes

Formal groups

Let X be the category of schemes, and X of formal schemes.

@ has all small colimits and finite limits.

@ Finite limits commute with colimits in 3%

There is a kind of special formal schemes, coming from LRings.
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Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes

Formal groups

Suppose R is a linearly topologized ring and S is a ring,

LRing(R,S) = colJim Ring(R/J,S).
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Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes

Formal groups

Suppose R is a linearly topologized ring and S is a ring,
LRing(R,S) = colJim Ring(R/J,S).

Hence we define Spf(R) = LRings(R, —).

X is a solid formal scheme if X 2 Spf(R), © = R.

We also have Spf(R) = Spf(R).
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Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes

Formal groups

Suppose R is a linearly topologized ring and S is a ring,
LRing(R,S) = colJim Ring(R/J,S).

Hence we define Spf(R) = LRings(R, —).

X is a solid formal scheme if X 2 Spf(R), © = R.

We also have Spf(R) = Spf(R).

We denote the full subcategory consisting of solid formal schemes
by :{sol-
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Formal groups

We have following adjoint functors.
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Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes

Formal groups

We have following adjoint functors.

e : LRings < FRings : /

Spf(0) X S Xeop 1 i

)
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Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes

Formal groups

We have following adjoint functors.

O : X S LRing® : Spf
O : X4 S FRing® : Spf
e : LRings < FRings : /
Spf(0) X S Xooy i

~

Xsor is closed under finite limits and has arbitrary colimits which
may not be preserved by the inclusion into X.
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Formal Schemes and Formal Groups Category of formal schemes

Solid formal schemes
Formal groups

We have following adjoint functors.

O : X S LRing® : Spf
O : X4 S FRing® : Spf
e : LRings < FRings : /
Spf(0) X S Xooy i

~

Xsor is closed under finite limits and has arbitrary colimits which
may not be preserved by the inclusion into X.

Example: Al = Spf(Z[¢]), A}(R) = Nil(R).
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Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes

Formal groups

We say G is a formal group over X if
o G =X x Al and
o u:GxxG—G.
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Solid formal schemes

Formal groups

We say G is a formal group over X if
o G =X x Al and
o 1:GxxG—G.
If X is solid, then G is solid with
Og = Oxl[t]].

A coordinate x on G is an element in O¢ establishing the above
isomorphism.
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Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes

Formal groups

We say G is a formal group over X if
o G =X x Al and
o 1:GxxG—G.
If X is solid, then G is solid with
Og = Oxl[t]].

A coordinate x on G is an element in O¢ establishing the above
isomorphism.

f(x,y) = p*(t) € Ox[x,y] is a formal group law.
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Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes

Formal groups

Suppose f : G — H is a homomorphism over X /F,, x,y are
coordinates,
*: Oxly]l — OxI[x]-

We have f*(y) = g(xP").
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Formal groups

Suppose f : G — H is a homomorphism over X /F,, x,y are
coordinates,
*: Oxly]l — OxI[x]-

We have f*(y) = g(xP").

We define Height(f) to be n in the above equation.
Height(G) is the height of

[pl: G2 Gxx - xx G5 G
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p times
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Formal Schemes and Formal Groups Cat y of formal schemes
Solid formal schemes

Formal groups

Suppose f : G — H is a homomorphism over X /F,, x,y are
coordinates,
*: Oxly]l — OxI[x]-

We have f*(y) = g(xP").

We define Height(f) to be n in the above equation.
Height(G) is the height of

[pl: G2 Gxx - xx G5 G
N—

p times

Proposition 1.1

Let f : G — H be a nonzero homomorphism over X with
Height(G) finite. Then Height(G) = Height(H) and Height(f) is
finite.
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ormal schemes

Formal groups

Fx is the Frobenius.

G: coordinate x, formal group law g(x, x’).
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Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes

Formal groups

Fx is the Frobenius.

G: coordinate x, formal group law g(x, x’).
FxG: coordinate y, g®P(y, y).
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Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes

Formal groups

Fx is the Frobenius.

G: coordinate x, formal group law g(x, x’).
FxG: coordinate y, g®P(y, y).

Fo/x(y) = %P
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Formal Schemes and Formal Groups Category of formal schemes
Solid formal schemes
Formal groups

fo=
(FgyG—"=*
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Pipe Rings

Spf(ED) classifies deformations of a formal group G over k.

Ei? = W(k)l[ulv"‘ 7Uh71]]
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Realization

Spf(ED) classifies deformations of a formal group G over k.
Ei? = W(k)[u, -+, up-1]
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@ This is not a complete local ring.

14 /27



Pipe Rings Pipe rings

Realization

Spf(ED) classifies deformations of a formal group G over k.
Ei? = W(k)[u, -+, up-1]

(Liw)En)® = W(K)[ur, -+, upa]luy 17,

where /h’ = (p, ug,---, uh/_l).

@ This is not a complete local ring.

@ Inverting topological nilpotent elements destroys the original
topology.

14 /27



Pipe rings
Realization

Pipe Rings

Spf(ED) classifies deformations of a formal group G over k.

Ei? = W(k)l[ulv"‘ ;Uhfl]]

(Liw)En)® = W(K)[ur, -+, upa]luy 17,

where /h’ = (p, ug,---, uh/_l).

@ This is not a complete local ring.

@ Inverting topological nilpotent elements destroys the original
topology. For instance, inverting x in k[x], we have the field

k((x))-
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Pipe rings
Realization

Pipe Rings

Goal:

@ Construct a category such that the usual topology of profinite
rings and their continuous maps contributes to a full
subcategory of it.
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Pipe rings
Realization

Pipe Rings

Goal:

@ Construct a category such that the usual topology of profinite
rings and their continuous maps contributes to a full
subcategory of it.

@ The maps
moEp — TFOLK(h/)Eh — WOLK(h”)LK(h’)Eh rd

belongs to this category.
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Pipe Rings

Pipe_; := the category of finite sets.
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Pipe rings

Pipe Rings

Realization

Pipe_; := the category of finite sets.
Pipej := the category of Profinite sets.

Pipe, = Pro(Ind( Pipe,_;)).

Ind(C) is the category with all filtered colimits added.

[coliim Xi, co}im Yi] = Iil(n coEim[X,-, Yjl.

Pro(C) is the category with all cofiltered limits added.

[Ii;n Xi, Iijm Yil = Iijm coliim[X,-, Yjl.
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Pipe rings
Realization

Pipe Rings

We have inclusions Pipe,,_; — Pipe,,, and denote the colimit by
Pipe,. Each Pipe,, has finite product preserved by th inclusion.

17/27



Pipe rings
Realization

Pipe Rings

We have inclusions Pipe,,_; — Pipe,,, and denote the colimit by
Pipe,. Each Pipe,, has finite product preserved by th inclusion.

A Pipe, ring R is just a ring object in Pipe,,.

17/27



Pipe rings
Realization

Pipe Rings

We have inclusions Pipe,,_; — Pipe,,, and denote the colimit by
Pipe,. Each Pipe,, has finite product preserved by th inclusion.

A Pipe, ring R is just a ring object in Pipe,,.

We refer to pipe rings as ring objects in Pipe_.
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Pipe rings
Realization

Pipe Rings

The constant system of a singleton set gives a terminal object
1 € Pipe_..
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Pipe rings
Realization

Pipe Rings

The constant system of a singleton set gives a terminal object
1 € Pipe_..
We define a functor Pipe,, — Sets by

S—[1,S5]=S

called realization.
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Pipe rings
Realization

Pipe Rings

The constant system of a singleton set gives a terminal object
1 € Pipe_..
We define a functor Pipe,, — Sets by

S—[1,5]=S

called realization.
If R is a pipe ring, then R is a ring.

This should be thought as a forgetful functor, which forgets
topological structures and continuity of maps.
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Pipe rings
Realization

Pipe Rings

Every —1-Pipe and 0-Pipe is called fine.
An n-Pipe Y is fine if Y = lim, colimg(Ya)s
e Each (Y4)s is fine and
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Pipe Rings

Every —1-Pipe and 0-Pipe is called fine.

An n-Pipe Y is fine if Y = lim, colimg(Ya)s
e Each (Y4)s is fine and
@ The induced map (Y,)s — Yq is injective.

Every —1-Pipe is cofine.
An n-Pipe X is cofine if X = limy colim, (X)),
e Each (X)), is cofine and

@ X — X, is surjective.
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Pipe rings
Realization

Pipe Rings

Every —1-Pipe and 0-Pipe is called fine.

An n-Pipe Y is fine if Y = lim, colimg(Ya)s
e Each (Y4)s is fine and
@ The induced map (Y,)s — Yq is injective.

Every —1-Pipe is cofine.

An n-Pipe X is cofine if X = limy colim, (X)),
e Each (X)), is cofine and
@ X — X, is surjective.

Fine and cofine are both preserved by inclusion Pipe,_; — Pipe,,.
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Pipe rings

Pipe Rings Realization

Proposition 2.1

The realization functor is faithful if the source is cofine and target
is fine.
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Pipe rings

Pipe Rings Realization

Proposition 2.1

The realization functor is faithful if the source is cofine and target
is fine.

[X,Y]=Ilim co%\imlim colﬁim[(XA),,7 (Ya)s]

C lim cogim lim (:o/lé)im[(X,\),,7 (Ya)s]

- Ii(;n co&imli;n[(XA)y,ﬁ]
= Ii0r£n co%\im[&, Yal

< limlX. Yol

— X, Y].
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Pipe rings

Pipe Rings Realization

Pipe Dream

For every pipe X, there is an initial cofine pipe X¢ over X, such
that X¢ — X induces an isomorphism X¢ — X. Dually, for every
pipe Y, there is a terminal fine pipe Y’ under Y, which induces
Y — Y7 an isomorphism. Finally, there is a class of maps W
called weak equivalences, such that

Pipe [W'](X, Y) = Pipe, (X<, Y7).
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Pipe rings
Realization

Pipe Rings

For x € R, we have a map of pipe rings

x:Re1xRY pyRAR
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Pipe rings
Realization

Pipe Rings

For x € R, we have a map of pipe rings

x:Re1xRY pyRAR

Hence inverting an element in underlying ring can be lifted as
colimit on pipe rings.

xR :=colim(RSRER—---)
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Pipe Rings

For x € R, we have a map of pipe rings
(x,id) I
x:R=1xR—>RxR>R

Hence inverting an element in underlying ring can be lifted as
colimit on pipe rings.

xR :=colim(RSRER—---)

Taking completion in the underlying ring can also be lifted in pipe
cases as a limit.
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Pipe rings
Realization

Pipe Rings

For x € R, we have a map of pipe rings
(x,id) I
x:R=1xR—>RxR>R

Hence inverting an element in underlying ring can be lifted as
colimit on pipe rings.

xR :=colim(RSRER—---)

Taking completion in the underlying ring can also be lifted in pipe
cases as a limit.

molkn Ep and its further localizations are bifine.
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A moduli problem
Pipe Formal Groups

As in the case of Spec and Spf, for a pipe ring R, we define
Spp(R) = Pipe Rings (R, —).

Restricting to —1 pipes and 0 pipes recovers Spec and Spf.
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A moduli problem
Pipe Formal Groups

As in the case of Spec and Spf, for a pipe ring R, we define

Spp(R) = Pipe Rings (R, —).
Restricting to —1 pipes and 0 pipes recovers Spec and Spf.
1&}? = Spp(R[x]) is an n pipe if R is an n — 1 pipe.

A pipe formal group G over an n pipe R is an n+ 1 pipe, such
that G = AL, and pu: G Xspp(R) G — G.

N2 _ a1 Al Al
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A moduli problem
Pipe Formal Groups

By Yoneda lemma, this yields a power series in R[x1, x2].

[Rx1, 2], R[x1, x2]]] — [R[x], R[x1, x2]]
1— f(Xl,XQ)
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We say G is of p height h, if R is complete with respect to some
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A moduli problem
Pipe Formal Groups

By Yoneda lemma, this yields a power series in R[x1, x2].

[Rx1, 2], R[x1, x2]]] — [R[x], R[x1, x2]]
1— f(Xl,XQ)

We say G is of p height h, if R is complete with respect to some
ideal /, and [/ contains p, a; for i < ph, and aph is invertible in Lﬂ

The pipe formal group over moLy ) Ep has p height h'.
ToLk(hy) -+ - Lk (h)En is bifine.
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A moduli problem
Pipe Formal Groups

Staged Lubin-Tate moduli problem: fix h = hg > --- > hy
RogRl%li)RN

where Rj is a complete local ring with residue field k, R; is an i
pipe ring.
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A moduli problem
Pipe Formal Groups

Staged Lubin-Tate moduli problem: fix h = hg > --- > hy
RogRl%li)RN

where Rj is a complete local ring with residue field k, R; is an i
pipe ring.

r Fo F1 e Fn

] |

Spp(k) — Spp(Ro) <—— Spp(R1) <— - <—— Spp(Rn)

F is of p height hy with its associated formal group law pushing
forward that of F,_; along i.
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A moduli problem
Pipe Formal Groups

This moduli problem is discrete and corepresented by

moEp — WOLK(hl)Eh = 000 = FQLK(hN) oo LK(hl)Eh~
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This moduli problem is discrete and corepresented by

moEp — WOLK(hl)Eh = 000 = FQLK(hN) oo LK(hl)Eh~

r Fo Fi o Fn

] |

Spp(k) — Spp(Ro) <—— Spp(R1) <— - <—— Spp(Rn)
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A moduli problem

Pipe Formal Groups

Thank Youl
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