GROUP ACTIONS ON K(1)-LOCALIZED E-THEORY AT HEIGHT 2

YIFAN WU

1. Group actions on height 2 Morava E-theory

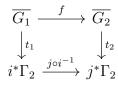
Let Γ_2 be the height 2 Honda formal group law over \mathbb{F}_{p^2} , which has p series $[p]_{\Gamma}(x) = x^{p^2}$. Every endomorphism of Γ_2 is defined over \mathbb{F}_{p^2} . Let F be the universal deformation of Γ_2 over $W(\mathbb{F}_{p^2})[\![u]\!]$, which has p series

$$[p]_F(x) = px +_F ux^p +_F x^{p^2}.$$

A deformation of Γ_2 consists of a triple $(G/R, i, \alpha)$ with

- G is a formal group law over R,
- $i: \mathbb{F}_{p^2} \to R/m$, an injection into the residue field of R,
- $t: \overline{G} = G \otimes_R R/m \to \Gamma_2 \otimes_{\mathbb{F}_{n^2}} R/m$ an isomorphism.

A *-isomorphism between two such deformations, say (G_1, i, t_1) and (G_2, j, t_2) , over R is an isomorphism $f: G_1 \to G_2$ such that the diagram



commutes.

Remark 1. The coefficients of Γ_2 actually lie in \mathbb{F}_p , hence the bottom row in previous diagram is in fact the identity map.

An automorphism α of Γ_2 will induce a permutation on the set of deformations of Γ_2 over R with \star -isomorphisms via

$$(G, i, t) \mapsto (G, i, \alpha \circ t),$$

which is represented by a continuous automorphism of $W(\mathbb{F}_{p^2})[\![u]\!]$. Therefore we get an action of the Morava stabilizer group S_2 on $W(\mathbb{F}_{p^2})[\![u]\!]$, with these actions fixing the residue field \mathbb{F}_{p^2} .

We can also extend our definitions. Let $\mathbb{G}_2 = \operatorname{Aut}(\mathbb{F}_{p^2}, \Gamma_2)$ be the set of tuples (σ, β) with $\sigma \in \operatorname{Gal}(\mathbb{F}_{p^2}/\mathbb{F}_p)$ and $\beta : \sigma^*\Gamma_2 \to \Gamma_2$ being an isomorphism. The group \mathbb{G}_2 also acts on the set of deformations, via

$$(G, i, t) \mapsto (G, i \circ \sigma, (i^*\beta)^{-1} \circ t)$$

with the last isomorphism presented by

$$\overline{G} \xrightarrow{t} i^* \Gamma_2 \xleftarrow{i^*\beta} i^* \sigma^* \Gamma_2.$$

These groups fit into a short exact sequence

$$0 \to S_2 = \operatorname{Aut}(\Gamma_2) \to \mathbb{G}_2 \to \operatorname{Gal}(\mathbb{F}_{p^2}/\mathbb{F}_p) \to 0.$$

YIFAN WU

2. On K(1)-local height 2 E-theory

Now we turn to the K(1)-local case. Let H be the base change of F via the inclusion map $W(\mathbb{F}_{p^2})[\![u]\!] \hookrightarrow W(\mathbb{F}_{p^2})(\!(u))_p^{\wedge}$, which has the p series same as F. Let H_0 be the formal group law by passing to the residue field $\mathbb{F}_{p^2}((u))$. We have

$$[p]_{H_0}(x) = ux^p +_{H_0} x^{p^2}.$$

There are some groups action on the ring $\Lambda = W(\mathbb{F}_{p^2})((u))_p^{\wedge}$.

- (1) Via the localization map, we have an action of G₂ on Λ. However not all of these actions are continuous. The action of G₂ only ensures that (p, u) is mapped into (p, u) in W(F_{p²})[[u]] but it may not take (p) into itself. Hence only a part of G₂ makes sense.
- (2) The ring Λ classifies all augmented deformations of H_0 with \star -isomorphisms. Recall that an augmented deformation is a triple (G, i, t) with
 - G a formal group law over R,
 - $i : \Lambda \to R$ local homomorphism,
 - $t: \overline{G} \to H_0 \otimes^i_{\mathbb{F}_{p^2}((u))} R/m$ an isomorphism.

Following the same procedures, we see that the automorphism group $\operatorname{Aut}(H_0)$ acts continuously on Λ . Since H_0 has height 1, we know that the full automorphism group of H_0 is $S_1 = \mathbb{Z}_p^{\times}$ over an algebraically closed field.

Let $\phi(t) = \sum_i b_i t^i$ be an automorphism of H_0 , we have

$$[p]_{H_0}(\phi(x)) = u\phi(x)^p +_{H_0} \phi(x)^{p^2} = \phi(ux^p +_{H_0} x^{p^2}).$$

Calculating mod x^{p^2} , we see that $u\phi(x)^p = \phi(ux^p) \mod x^{p^2}$. Expanding things out, we have

$$\sum_{i=1}^{p-1} ub_i^p x^{pi} = \sum_{i=1}^{p-1} b_i u^i x^{pi}$$

Comparing coefficients, we find that $b_i^p = b_i u^{i-1}$. In particular $b_1^{p-1} = 1$ means $b_1 \in \mathbb{F}_p$. While if $b_i \neq 0$, we have

$$b_i^{p-1} = u^{i-1}, \ i = 2, 3, \dots, p-1.$$

This suggests that we can never expect H_0 to have all automorphisms over any field extension $\mathbb{F}_q((u))$. Therefore there is a subgroup of \mathbb{Z}_p^{\times} acting on Λ .

(3) From number theory, p-adic Galois representations over \mathbb{Z}_p , we know there is an action $\operatorname{Gal}(K_{\infty}/K) = \mathbb{Z}_p^{\times}$ on Λ , where K is a finite extension of \mathbb{Q}_p with residue field \mathbb{F}_{p^2} and $K_{\infty} = K(\mu_{p^{\infty}})$ is the maximal cyclotomic extension over K.

So the question here is: How these things fit together?