
GOOD GROUPS AND COHOMOLOGY CONCENTRATING IN EVEN
DEGREES

YIFAN WU

Abstract. In this note, we review the definition of good groups and the proof of the wreath
product lemma in [HKR00]. We will try to extend these ideas from K(n) to an arbitrary
field spectrum.
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1. Preliminaries

1.1. Classifying Spaces. Let G be a finite group. There is a contractible space EG with
free G actions. Denote the quotient space EG/G by BG. We have

πnBG =

{
G, n = 1

0, else

Suppose H is a subgroup of G. Since G acts freely on EG, we have H also acts freely on
EG, hence EG/H = BH. They fit into a sequence of covering spaces of BG, i.e.

EG −→ EG/H = BH −→ EG/G = BG.

The cover π : BH → BG is [G : H] sheeted with fiber G/H. This map is the B of the
inclusion H ↪→ G.
On the other hand, we can construct a stable transfer map going on the ‘wrong’ way. Write

G =
∐

τiH and n = [G : H]. For each τi, left multiplication by g sends it to τσ(g)(i)hi,g.
Hence we obtain a permutation representation G → Σn and a homomorphism

G → Hn ⋊ Σn = H ≀ Σn

g 7→ (h1,g, . . . , hn,g, σ(g)) .

We define the transfer map to be the composite

BG B(H ≀ Σn) BHn ×Σn EΣn QBHn ×Σn EΣn

QBH

=

Θ

1
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where the map Θ stands for the addition on the infinite loop space QBH. This extends
uniquely to a map of spectrum Tr : Σ+BG → Σ+BH.

Remark 1. In ordinary homology, the transfer map has a neat expression. Suppose ∆ is a
k-simplex of BG, sufficiently small. Then we have a map C∗(BG) → C∗(BH)

∆ 7→
∑

∆′∈π−1∆

∆′.

From this, we see easily that the composite

Σ+BG
Tr−→ Σ+BH

π−→ Σ+BG

will induce multiplication by n, the index of the cover, on ordinary homology.

Proposition 1. Suppose H is a Sylow p-subgroup of G, then the composite

Σ+BG
Tr−→ Σ+BH

π−→ Σ+BG

will induce an equivalence after localizing at (p).

Proof. Because after localization at (p), n is invertible. Hence the composite induces an
isomorphism on Z(p) homology. □

Corollary 1. In the above situation, Tr∗ is surjective and π∗ is injective.

1.2. Good Groups. Let ρ be a complex representation of H < G, which is the same as a
vector bundle over BH. Let e(ρ) be the corresponding Euler class in K(n)∗(BH).

Definition 1. We say an element x in K(n)∗(BG) is good, if x is a transferred Euler class of
a subrepresentation of G, i.e. x = TrGH (e(ρ)). A group G is good if K(n)∗(BG) is generated
by good elements over K(n)∗. Of course, K(n)∗(BG) is concentrated in even degrees if G is
good.

Proposition 2. The following properties for being good hold.

(1) Every finite abelian group is good.
(2) G is good if its Sylow p-subgroup is good.
(3) If x1 is a good element in K(n)∗(BG1) and x2 is good in K(n)∗(BG2), then so is

their product in K(n)∗(BG1 ×BG2).
(4) If f : K → G is any homomorphism and x is good in K(n)∗(BG), then f ∗(x) is a

linear combination of good elements in K(n)∗(BH).
(5) If x and y are both good, then their cup product xy is a sum of good elements.

Proof.

(1) We only need to consider p-components of G, then reduce the case to G = Z/p.
While K(n)∗(BZ/p) = K(n)∗[x]/[p]F (x) and x is the Euler class of any line bundle
corresponding to a generator of the character group Z/p∗.(α : Z/p → S1 will induce
a map BZ/p → BS1 = CP∞, and x is the Euler class of the corresponding line
bundle.)

(2) The map Tr∗ : K(n)∗(BGp) → K(n)∗(BG) is surjective.

(3) Suppose x1 = TrG1
H1
(e(ρ1)) and x2 = TrG2

H2
(e(ρ2)). We have

x1 × x2 = TrG1×G2
H1×H2

(e(ρ1 ⊕ ρ2))

.
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(4) Suppose x = TrGH(e(ρ)). We have∏
BKα BH

BK BG

∏
fα

Bf

The naturality of transfer maps yield

f ∗(x) =
∑

Tr(e(f ∗
α(ρ))).

(5) If x and y are good, then x × y is good in K(n)∗(B(G × G)). Composing with the
diagonal ∆ : G → G×G gives the cup product xy.

□

Remark 2. Not all groups are good. In fact, for each p, there are examples of groups which
are not good. For p > 2, n ≥ 2, the Sylow p-subgroup P = (Z/p)4 ⋊ (Z/p)2 of GL4(Fp)
works. See [KL00] for detail calculations.

2. The Wreath Product Lemma

To show a group G is good, we may consider its Sylow p-subgroups. In practice, a lot of
such groups have wreath product expressions. For example, Sylow p-subgroups of BΣk is a
(product) of iterated wreath product of Z/p with itself. Thus it is wonderful if the following
is true.

Theorem 1 (The Wreath Product Lemma). If G is good, then so does the wreath product
G ≀ Z/p.

Let W denote G ≀ Z/p. Consider the sequence

1 → Gp → W → Z/p → 1

which induces a fiber sequence

BGp → BW → BZ/p.
We have the Atiyah-Hirzebruch spectral sequence

E∗,∗
2 (BW ) = H∗(BZ/p,K(n)∗(BGp)) ⇒ K(n)∗(BW )

The action of Z/p over Gp is a cyclic permutation, hence Z/p acts on K(n)∗(BGp) =
⊗K(n)∗(BG) by permutation too. Since K(n)∗(BG) is finitely generated, we can choose
a basis {xi} of K(n)∗(BG), then

K(n)∗(BGp) = F ⊕ T

The module F is a free Z/p module, with basis {xi1 ⊗· · ·⊗xip} such that not all ij are same.
The module T has trivial Z/p action. Therefore, the E2 page can be identified with

E2 = H∗(BZ/p, F ⊕ T ) = H∗(Z/p, F )⊕H∗(Z/p, T ).
A simple calculation implies

H∗(Z/p, F ) =

{
F Z/p, ∗ = 0

0 , else
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and

H∗(Z/p, T ) = H∗(BZ/p)⊗ T

with

H∗(BZ/p) = E(u)⊗ P (x)

where |u| = 1 and |x| = 2.

From above analysis, we find that the part E≥1,∗
2 of the E2 page is H

≥1(BZ/p)⊗T . Since
we alredy know that the spectral sequence

E∗,∗
2 (BZ/p) = H∗(BZ/p,K(n)∗) ⇒ K(n)∗(BZ/p) = K(n)∗[x]/vnx

pn ,

the only nonzero differential is

d2pn−1(u) = vnx
pn .

Hence we conclude that for r ≥ 2, the E≥1,∗
r (BW ) page is isomorphic to E≥1,∗

2 (BZ/p)⊗ T .
In particular, when r ≥ 2pn, there are no differentials in this area.

Lemma 1. The elements in E0,∗
2 (BW ) are all permanent cycles, which are linear combina-

tions of good elements.

If this lemma is correct, which means there are also no differentials starting from the 0th
column, and then we have

E∗,∗
r (BW ) = H0(Z/p, F )⊕ (E∗,∗

r (BZ/p)⊗ T ) ,

and

K(n)∗(BW ) = F Z/p ⊕ (K(n)∗(BZ/p)⊗ T ) .

The last indentity implies W is a good group directly.

Proof of Lemma 1. The proof falls into two parts.
An element in F Z/p ⊂ K(n)∗(BGp) is a permanent cycles if and only if it is an image of

the restriction map K(n)∗(BW ) → K(n)∗(BGp). Note that F Z/p is generated by σ(x) =∑
σi∈Z/p σi(x), x ∈ K(n)∗(BGp), i.e. the sum of orbits of x. The composite

K(n)∗(BGp) K(n)∗(BW ) K(n)∗(BGp)Tr Res

will send x to σ(x).
An element in T is of the form x⊗· · ·⊗x for x ∈ K(n)∗(BG). We can assume x = TrGH(e(ρ))

is a transferred Euler class. The representation ρ⊕ · · · ⊕ ρ is a representation of Hp, which
extends to a representation ρ̂ of H ≀ Z/p. The result follows from the diagram.

K(n)∗(BHp) K(n)∗(B(H ≀ Z/p))

K(n)∗(BGp) K(n)∗(BW )

Tr

Res

Tr

Res

□
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3. Generalizing to Arbitrary Field Spectra

In the above discussions, we realize that a lot of properties does not rely on the cohomology
theory K(n). It is natural to ask if we can extends our definition of good groups to a general
setting.

Let F be an even periodic field spectrum, i.e. a ring spectrum with

π∗F = k[β±]

for some β in degree 2 and char k = p. F is automatically complex oriented. We denote the
formal group law over F still by F , and its height by n. Under these settings, the spectrum
F enjoys some significant properties.

Proposition 3. There is a linearly duality between F -homology and cohomology, i.e.

F ∗(X) = HomF∗(F∗(X), F ∗).

For spectra X and Y , we have a Künneth homeomorphism:

F ∗(X)⊗̂F ∗(Y )
∼−→ F ∗(X ∧ Y )

Proof. There are two ways to see the first statement. One way is applying the universal
coefficient spectral sequence

E∗,∗
2 = Ext∗,∗F∗

(F∗(X), F ∗) ⇒ F ∗(X).

Since all things are free F∗ modules. The E2 page collapses and we only has the 0th column,
i.e. the Hom part.

The second way is to look at the Serre spectral sequences. The homological and cohomo-
logical spectral sequences are dual to each other (both terms and differentials), which yields
the conclusion.

The second statement is [Boa95, Theorem 4.19]. □

Proposition 4. For each finite group G, F ∗(BG) is finite as F ∗ modules.

Proof. This is proved for F = K(n) in [Rav82] of which I haven’t found the citation link.
We will recall his proof in our settings.

First, we may assume G is a p-group, for the surjectivity of transfer maps. We can find a

normal subgroup H of G with index p, and a group Ĝ with Ĝ/H ∼= Z.
Assume F ∗(BH) is finite. The fiber sequence

BH → BĜ → S1

implies F ∗(BĜ) is finite.
Consider the map between fiber sequences

BĜ BG CP∞

S1 BZ/p CP∞

Id

The Atiyah Hirzebruch spectral sequence for the bottom row implies there is a differential
killing xpn for F ∗(BZ/p) = F ∗[x]/g(x), where g(x) is the degree pn Weierstrass polynomial
associated to [p]F (x).
Finally, we see that E∗,∗

r (BG) is a module over E∗,∗
r (BZ/p). Hence xpn is killed in

E∗,∗
r (BG). The finiteness of F ∗(BG) follows from it of F ∗(BĜ). □
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Now we can try to generalize the theory of good groups to our settings.

Definition 2. Let G be a finite group. We say an element x ∈ F ∗(BG) is F -good and G is
F -good if they satisfy the conditions in Definition 1 with K(n) replaced by F .

Proposition 5. Proposition 2 still holds for F -goodness.

Proposition 6. The wreath product lemma holds for F -goodness.

Proof. All things follow from the proof of Theorem 1. □

Remark 3. It says in [Lur10, Lecture 24, Proposition 9,10] that F is a K(n)-module. Hence
F is equivalent to

∨
αk

ΣαkK(n) with all αk even. There are two questions.

(1) How to express for example Kun−1 := LK(n−1En/(p, u1, . . . , un−2) as a wedge sum of
K(n− 1), where K∗

un−1
= Fp((un−1))[β

±] with |β| = 2.
(2) What’s the relation between K(n)∗(X) and M∗(X) where M =

∨
αk

ΣαkK(n).

If M∗(X) behaves as what one hopes, then we can directly say that F ∗(BG) is concentrated
in even degrees.

Corollary 2. F ∗BΣk is concentrated in even degrees.
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