GOOD GROUPS AND COHOMOLOGY CONCENTRATED IN DEGREES
YIFAN WU

ABSTRACT. In this note, we review the definition of good groups and the proof of the wreath
product lemma in [HKR00]. We will try to extend these ideas from K(n) to an arbitrary
field spectrum.
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1. PRELIMINARIES

1.1. Classifying Spaces. Let G be a finite group. There is a contractible space EG with
free G actions. Denote the quotient space EG/G by BG. We have

G, n=1

0, else

m,BG = {

Suppose H is a subgroup of GG. Since G acts freely on EG, we have H also acts freely on
EG, hence EG/H = BH. They fit into a sequence of covering spaces of BG, i.e.

EG — EG/H = BH — EG/G = BG.

The cover m : BH — BG is [G : H] sheeted with fiber G/H. This map is the B of the
inclusion H — G.

On the other hand, we can construct a stable transfer map going on the ‘wrong’ way. Write
G = [InH and n = [G : H]. For each 7;, left multiplication by ¢ sends it to T, @i)hi-
Hence we obtain a permutation representation G — ¥,, and a homomorphism

G—->H"xY,=H1%,
g = (hl,ga"‘7hn,g70<g))'

We define the transfer map to be the composite

BG —— B(H1%,) —— BH" xy, EX, — QBH" xy, EX,

le

QBH
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where the map © stands for the addition on the infinite loop space QBH. This extends
uniquely to a map of spectrum Tr: ¥, BG — X, BH.

Remark 1. In ordinary homology, the transfer map has a neat expression. Suppose A is a
k-simplex of BG, sufficiently small. Then we have a map C,(BG) — C.(BH)

From this, we see easily that the composite
.BG % v, BH % ¥, BG
will induce multiplication by n, the index of the cover, on ordinary homology.
Proposition 1. Suppose H is a Sylow p-subgroup of G, then the composite
Y. BG 5 v, BH % ¥, BG
will induce an equivalence after localizing at (p).

Proof. Because after localization at (p), n is invertible. Hence the composite induces an
isomorphism on Z,) homology. U

Corallary 1. In the above situation, Tr* is surjective and 7* is injective.

1.2. Good Groups. Let p be a complex representation of H < G, which is the same as a
vector bundle over BH. Let e(p) be the corresponding Euler class in K(n)*(BH).

Definition 1. We say an element x in K (n)*(BG) is good, if x is a transferred Euler class of
a subrepresentation of G, i.e. x = Tr% (e(p)). A group G is good if K (n)*(BG) is generated
by good elements over K(n)*. Of course, K(n)*(BG) is concentrated in even degrees if G is
good.

Proposition 2. The following properties for being good hold.

(1) Ewvery finite abelian group is good.

(2) G is good if its Sylow p-subgroup is good.

(3) If 1 is a good element in K(n)*(BGy) and x4 is good in K(n)*(BGs), then so is
their product in K(n)*(BG; x BGs).

(4) If f : K — G is any homomorphism and x is good in K(n)*(BG), then f*(x) is a
linear combination of good elements in K(n)*(BH).

(5) If x and y are both good, then their cup product xy is a sum of good elements.

Proof.

(1) We only need to consider p-components of G, then reduce the case to G = Z/p.
While K (n)*(BZ/p) = K(n)*[z]/[p]r(x) and x is the Euler class of any line bundle
corresponding to a generator of the character group Z/p*.(a: Z/p — S* will induce
a map BZ/p — BS!' = CP>, and z is the Euler class of the corresponding line
bundle.)

(2) The map Tr* : K(n)*(BG,) — K(n)*(BG) is surjective.

(3) Suppose x; = Trgi(e(pl)) and xo = Trgz(e(pg)). We have

w1 X 1y = TG (e(pr @ p2))
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(4) Suppose © = Tr§(e(p)). We have

118k, X pu

| !

BK —5' Bg

The naturality of transfer maps yield

fr@) =) Te(e(fi(p)).

(5) If z and y are good, then = x y is good in K(n)*(B(G x G)). Composing with the
diagonal A : G — G x G gives the cup product zy.
O

Remark 2. Not all groups are good. In fact, for each p, there are examples of groups which
are not good. For p > 2, n > 2, the Sylow p-subgroup P = (Z/p)* x (Z/p)* of GL4(F,)
works. See [KLOO] for detail calculations.

2. THE WREATH PropucTt LEMMA

To show a group G is good, we may consider its Sylow p-subgroups. In practice, a lot of
such groups have wreath product expressions. For example, Sylow p-subgroups of BY}; is a
(product) of iterated wreath product of Z/p with itself. Thus it is wonderful if the following
is true.

Theorem 1 (The Wreath Product Lemma). If G is good, then so does the wreath product
G Z]p.

Let W denote G Z/p. Consider the sequence
1-GP =W —=Z/p—1
which induces a fiber sequence
BG? — BW — BZ/p.
We have the Atiyah-Hirzebruch spectral sequence
Ey"(BW) = H*(BZ/p, K (n)"(BG?)) = K(n)"(BW)

The action of Z/p over GP is a cyclic permutation, hence Z/p acts on K(n)*(BGP) =
®K (n)*(BG) by permutation too. Since K(n)*(BG) is finitely generated, we can choose
a basis {z;} of K(n)*(BG), then

K(n)"(BG*) =F&T

The module F' has free Z/p action, with basis {z; ®---®x;,} such that not all i; are same.
The module T" has trivial Z/p action. Therefore, the Ey page can be identified with

Ey = H*(BZ/p, F©T) = H(Z/p, F) & H*(Z/p,T).
A simple calculation implies
FZ/p7 x=0

0 , else

H*(Z/p, F) :{
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and
H*(Z/p,T)= H*(BZ/p)® T
with
H*(BZ/p) = E(u) ® P(x)

where |u| =1 and |z| = 2.
From above analysis, we find that the part E5"* of the E, page is HZ'(BZ/p)®T. Since
we alredy know that the spectral sequence

Ey"(BZ/p) = H'(BZ/p, K(n)") = K(n)"(BZ/p) = K(n)"[z]/vaa™,
the only nonzero differential is
dopn 1 (1) = v, 27"

Hence we conclude that for r > 2, the E="*(BW) page is isomorphic to Ey"*(BZ/p) ® T.
In particular, when r > 2p™, there are no differentials in this area.

Lemma 1. The elements in Eg’*(BW) are all permanent cycles, which are linear combina-
tions of good elements.

If this lemma is correct, which means there are also no differentials starting from the Oth
column, and then we have

Er*(BW) = H(Z/p,F) ® (E;*(BZ/p) ® T),
and
K(n)*(BW) = F¥? & (K(n)* (BZ/p) ® T).
The last indentity implies W is a good group directly.

Proof of Lemma 1. The proof falls into two parts.

An element in FZ/? C K(n)*(BGP) is a permanent cycles if and only if it is an image of
the restriction map K (n)*(BW) — K(n)*(BGP?). Note that F%/? is generated by o(z) =
> oiezp 0i@), T € K(n)*(BGP), ie. the sum of orbits of z. The composite

K(n)*(BG?) — K(n)*(BW) -4 K(n)*(BGP)

will send x to o(z).

An element in T is of the form 2®- - -®z for z € K (n)*(BG). We can assume 2 = Tr% (e(p))
is a transferred Euler class. The representation p @ --- & p is a representation of H?, which
extends to a representation p of H!Z/p. The result follows from the diagram.

K(n)"(BH?) <z— K(n)"(B(H1Z/p))

[r [r

K(n)*(BGP) N vv— K(n)*(BW)
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3. GENERALIZING TO ARBITRARY FIELD SPECTRA

In the above discussions, we realize that a lot of properties does not rely on the cohomology
theory K(n). It is natural to ask if we can extends our definition of good groups to a general
setting.

Let F' be an even periodic field spectrum, i.e. a ring spectrum with

. F = k[fF]

for some [ in degree 2 and char k = p. F'is automatically complex oriented. We denote the
formal group law over F' still by F', and its height by n. Under these settings, the spectrum
F' enjoys some significant properties.

Proposition 3. There is a linearly duality between F'-homology and cohomology, i.e.
F*(X) = Homp, (F.(X), F*).
For spectra X and Y, we have a Kinneth homeomorphism:
FH(X)RF*(Y) = F*(X AY)
Proof. There are two ways to see the first statement. One way is applying the universal
coefficient spectral sequence
Ey" = Exty (Fu(X), F*) = F*(X).

Since all things are free F, modules. The E, page collapses and we only has the Oth column,
i.e. the Hom part.

The second way is to look at the Serre spectral sequences. The homological and cohomo-
logical spectral sequences are dual to each other (both terms and differentials), which yields
the conclusion.

The second statement is [Boa95, Theorem 4.19]. O

Proposition 4. For each finite group G, F*(BG) is finite as F* modules.

Proof. This is proved for F' = K(n) in [Rav82] of which I haven’t found the citation link.
We will recall his proof in our settings.
First, we may assume G is a p-group, for the surjectivity of transfer maps. We can find a

normal subgroup H of G with index p, and a group G with G /H = 7.
Assume F*(BH) is finite. The fiber sequence

BH — BG — S
implies F *(B@) is finite.

Consider the map between fiber sequences

BG —— BG —— CP>®

| | Ju

St —— BZ/p —— CP*®

The Atiyah Hirzebruch spectral sequence for the bottom row implies there is a differential
killing 2¥" for F*(BZ/p) = F*[x]/g(x), where g(x) is the degree p™ Weierstrass polynomial
associated to [p|g(x).

Finally, we see that E**(BG) is a module over E**(BZ/p). Hence z*" is killed in

E**(BG). The finiteness of F'*(BG) follows from it of F*(BQ). O
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Now we can try to generalize the theory of good groups to our settings.

Definition 2. Let G be a finite group. We say an element x € F*(BG) is F-good and G is
F-good if they satisfy the conditions in Definition |1 with K(n) replaced by F.

Proposition 5. Proposition |4 still holds for F-goodness.
Proposition 6. The wreath product lemma holds for F'-goodness.
Proof. All things follow from the proof of Theorem [} 0

Remark 3. It says in [Lurl0), Lecture 24, Proposition 9,10] that F' is a K (n)-module. Hence
F'is equivalent to \/ , X K(n) with all cy, even. There are two questions.
(1) How to express for example K, |, ‘= Lgmn-1E,/(p,u1, ..., Un—2) as a wedge sum of
K(n—1), where K = TF,(u,—1))[8F] with |8] = 2.
(2) What’s the relation between K(n)*(X) and M*(X) where M =\/, X K(n).
If M*(X) behaves as what one hopes, then we can directly say that F*(BG) is concentrated
i even degrees.

Corallary 2. F*BY is concentrated in even degrees.

REFERENCES

[Boa95] J Michael Boardman. Stable operations in generalized cohomology. Handbook of algebraic topology,
pages 585-686, 1995.

[HKRO0] Michael Hopkins, Nicholas Kuhn, and Douglas Ravenel. Generalized group characters and complex
oriented cohomology theories. Journal of the American Mathematical Society, 13(3):553-594, 2000.

[KL0O] Igor Kriz and Kevin P Lee. Odd-degree elements in the morava k (n) cohomology of finite groups.
Topology and its Applications, 103(3):229-241, 2000.

[Lurl0] Jacob Lurie. Chromatic homotopy theory. Lecture series, 2010.



	1. Preliminaries
	1.1. Classifying Spaces
	1.2. Good Groups

	2. The Wreath Product Lemma
	3. Generalizing to Arbitrary Field Spectra
	References

