
FORMAL SCHEMES AND FORMAL GROUPS

YIFAN WU

Abstract. This note is unfinished. It consists of the basic notions and ideas of formal
schemes and formal groups. The theory of Level structures is only mentioned, but not
finished.

1. Formal schemes

In algebraic geometry, a formal scheme is used to detect the local behavior around a closed
point. For example, Let R = k[x] for some field k. The maximal ideal (x) corresponds to the
closed point [0]. To study the local behavior around this closed point, one has a sequence

Spec(k) ∼= Spec(k)[x]/x → Spec(k)[x]/x2 → · · · → Spec(k)[x]/xn → · · · .

In each stage, Spec k[x]/xn has the underlying space [0], but the functions are more. This
indicates us to take the colimit of this sequence. Unfortunately, the category Sch of schemes
does not have all limits and colimits.

Remark 1. The category of locally ringed spaces has all limits and colimits. The category
Aff of affine schemes is the opposite category of Ring. We have the adjunction

Γ : Sch ⇆ Ringop : Spec

with Spec being a right adjoint. Hence it preserves the limits in Ringop, or equivalently,
colimits in Ring.

No matter in what cases, there is no evidence that the colimit should exist. Hence we have
the following definition. Now we say a scheme means an affine scheme in all of the notes, and
denote the category of affine scheme by X, the full subcategory of Fun(Ring,Set) consisting
of representable functors.

Definition 1. A formal scheme X is a small filtered colimit of scheme Xi. As we already
explained, this colimit may not exist in X. We can embed X into Fun(Ring,Set), where the
later always has colimits, pointwisely.

To be more concrete, for each ring R, we have

X(R) = colimXi(R).

Definition 2. Let X = colimXi and Y = Yj be formal schemes. Define

X̂(X, Y ) = lim
i
colim

j
X(Xi, Yj).

We denote X̂(X,A1) by OX , where A1 = Ring(Z[t],−). To be precise,

OX = limOXi
.
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Remark 2. From the definition, X̂ is actually the same as Ind(X). Note that in general,
one has

[colimXi, Y ] = lim[Xi, Y ].

By the definition of colimYj, we have

X̂(X, Y ) = lim
i
X̂(Xi, Y ) = lim

i
colim

j
X(Xi, Yj).

This is how we define morphisms in X̂.

Example 1. Let Ni = Spec Z[x]/xn. The resulting formal scheme is denoted by Â1. Note

that Â1(R) = colimRing(Z[x]/xn, R)) = Nil(R). And OÂ1 = Z[[x]].

The category X̂ has better categorical properties than X.

(1) X̂ has all small colimits and finite limits.

(2) finite limits commute with small colimits in X̂.

There are a special kind of formal schemes, called solid formal scheme, Spf(R), which we
will define right now.

Definition 3. A linear topologized ring is a ring R equipped with a neighborhood system
around 0 consisting of open ideals, which forms a topological basis under translation. The
category of such rings and continuous maps is denoted by LRing.

We can equip any ring S with discrete topology, which yields a fully faithful embedding
Ring → LRing. Suppose R ∈ LRing, S ∈ Ring, f is a continuous map from R to S. We
must have f−1(0) = J an open ideal in R. Hence f is equivalent to a map R/J → S between
rings. All open ideals in R form a cofiltered system under inclusion maps. Hence we have

LRing(R, S) = colim
J

Ring(R/J, S).

Therefore we define Spf(()R) ∈ Fun(Ring,Set) by

Spf(R)(S) = colim
J

Ring(R/J, S).

Definition 4. A solid formal scheme is a formal scheme which is isomorphic to Spf(R) for

some linearly topologized ring R. The solid formal schemes form a full subcategory X̂sol of

X̂.

Given a linearly topologized ring R, we have the related cofiltered system {R/J}, where J
runs through all open ideals. The limit of this system is denoted by R̂, called the completion

of R. The ring R̂ automatically inherits a topological structure from R. The preimage J of

J under the natural map R̂ → R/J forms a neighborhood system around 0 in R̂. It is easy

to check Spf(R̂) = Spf(R). A ring R is complete or a formal ring if R = R̂. The category of
formal rings is denoted by FRing, which is a full subcategory of LRing.

Note that

X̂(X, Spf(R)) = lim
i
X̂(Xi, Spf(R)) = lim

i
LRing(R,OXi

) = LRing(R,OX).

Hence we have the adjoint pairs:

O : X̂ ⇆ LRingop : Spf.

We have the unit map X → Spf(OX), and the counit R → R̂, which is just the completion.
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Proposition 1. We have the following propositions.

(1) X is a solid fomal scheme then OX is a formal ring.
(2) X is solid iff X → Spf(OX) is an isomorphism.

(3) The inclusion functor X̂sol → X̂ is right adjoint to X → Spf(OX).
(4) The inclusion functor FRing → LRing is right adjoint to taking completion.

Proof. (1) Obvious.
(2) X is solid, then X is isomorphic to Spf(R) for some R. Therefore OX is isomorphic to

R̂, which yields the conclusion. The converse is obvious.

(3) The functor FRingop → X̂sol sending R to Spf(R) is fully faithful. Suppose R, S are two
formal rings, then

X̂sol(Spf(R), Spf(S)) = lim
J

X̂sol(Spec(R/J), Spf(S)) = limLRing(S,R/J) = FRing(S,R).

Therefore by (2), this functor defines an equivalence. The equation

X̂(X, Spf(R)) = LRing(R,OX) = X̂sol(Spf(OX), Spf(R))

implies the inclusion functor being right adjoint to X → Spf(OX).
(4) The same argument holds.

LRing(R, Ŝ) = Spf(R)(Ŝ) = Spf(R̂)(Ŝ) = FRing(R̂, Ŝ).

□

Definition 5. Suppose R → S and R → T are continuous maps in LRing. Define their
tensor products S ⊗R T to be the usual tensor product equipped with linear topology spanned
by S⊗R I + J ⊗R T , for open ideals I ⊂ T and J ⊂ S. This actually the pushout in LRing.
If both of them are formal rings, then we define S⊗̂RT to be the completion of S⊗RT , which
corresponds to the pushout in FRing for the completion being a left adjoint.

2. Formal Groups

Definition 6. A formal group G over a formal scheme X is a group object in X̂X . We also

require that G is isomorphic to X × Â1 in X̂X . A map u : G → Â1 makes G isomorphic to

X × Â1 is called a coordinate on G.

Suppose X is solid. Then X × Â1 is again solid. From the equivalence of categories, we

have X × Â1 is isomorphic to the Spf of coproduct of OX and Z[[t]] in FRing, which is the

completion of OX ⊗Z Z[[t]] ∼= OX [[t]]. Therefore G is solid as well with OG
∼= ÔX [[t]].

Moreover, if we further assume X is just a scheme, then

OG
∼= OX⊗̂ZZ[[t]] ∼= OX [[t]]

for now OX is equipped with the discrete topology. A coordinate on G is the same as an

isomorphism from G to X × Â1, which corresponds to a continuous map

u : Z[[t]] → OG

which induces an isomorphism
OX [[t]] → OG.

Now since G is a group object, we have a map G×X G
µ−→ G, which corresponds to

OG → OG ⊗OX
OG
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of OX modules. We also call the latter map µ, and it satisfies following properties.

Identity: There is a map X
e−→ G such that the composite

X → G → X

is identity. Moreover we require the composition

G ∼= X ×X G
e×id−−→ G×X G

µ−→ G

equals the identity from G to itself.
Equivalently, there is a map e : OG → OX , such that

OX → OG → OX

is identity and

OG
µ−→ OG ⊗OX

OG
e⊗id−−→ OX ⊗OX

OG
∼= OG

is identity.
Associativity:

G×X G×X G
µ×id //

id×µ

��

G×X G

µ

��

OG
µ //

µ

��

OG ⊗OX
OG

id⊗µ

��
G×X G

µ // G OG ⊗OX
OG

µ⊗id // OG ⊗OX
OG ⊗OX

OG.

Commutativity:

G×X G
T //

µ

��

G×X G

µ

��

OG ⊗OX
OG

T //

µ

  

OG ⊗OX
OG

µ

~~
G OG

where T is transposition.

If we choose a coordinate on G, then we have an isomorphism from OG to OX [[t]]. The map
µ now is

OX [[t]] −→ OX [[x, y]]

between OX modules, which is determined by f(x, y) = µ(t) ∈ OX [[x, y]]. Such power series
f(x, y) is called a formal group law over OX , which satisfies

• f(0, y) = y;
• f(x, f(y, z)) = f(f(x, y), z);
• f(x, y) = f(y, x).

Remark 3. The identity OX [[t]] → OX can only be t 7→ 0. Since this map is continuous
between OX modules, hence is determined by the image of t which is a nilpotent element n
in OX . Note that

f(x, y) =
∑

fi(x)y
i =

∑
fi(y)x

i
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by commutativity. Hence we have

f(n, y) =
∑

fi(n)y
i = y

which implies that f0(n) = 0. Hence f0(x) is divided by xk for some k. So does f0(y), that
is

f(x, y) = f0(x) + f0(y) + · · · .
Hence k must be 1 and n = 0.

Example 2. The additive formal group Ga = Spf(Z[[t]]) is a formal group over Z. For any
ring R, Ga(R) → Spec(Z)(R) is given by the inclusion of rings Nil(R) → ∗. The group
structure on Ga is given by

Nil(R)× Nil(R) → Nil(R), (a, b) 7→ a+ b.

If we choose a coordinate id : Z[[t]] → Z[[t]], the nwe get a formal group law f(x, y) = x+ y.
The multiplicative formal group Gm over Z has the same underlying formal scheme. The

group structure is given by

Nil(R)× Nil(R) → Nil(R), (a, b) 7→ a+ b+ ab.

Use the same coordinate, we have a formal group law f(x, y) = (1 + x)(1 + y)− 1.

A morphism between two formal groups G over X and H over Y is just a commutative

diagram in X̂ which respects the group structures of G and H.

G
q //

��

H

��

OY
//

��

OX

��
X // Y OH

q∗ // OG

Let x, y be coordinates on G and H, then we have isomorphisms OG ∼= OX [[x]] and OH ∼=
OY [[y]] respectively. The morphism q∗ sending y to a series f(x) ∈ OX [[x]], which satisfies

f(x+G x′) = f(x) +H f(x′).

Such series is called a homomorphism between formal group laws.

Example 3. A crucial endomorphism from G to itself is multiplication by p. It is induced
by

[p] : G ∆−→ G×X · · · ×X G︸ ︷︷ ︸
p times

µ−→ G.

where ∆ is the diagonal. Choose a coordinate, we have [p](x) = x+G · · ·+G x,

Suppose now X is over Spec(Fp) and q : G → H over X with x, y are coordinates on them.
Then there must be a ̸= 0 ∈ OX and r such that

q∗(y) = axr mod xr+1.

Since q is a homomorphism, we have

a(xr
0 + xr

1) = a(x0 + x1)
r mod (x0, x1)

r+1.

Let r = pnm, we have

xr
0 + xr

1 = (xpn

0 + xpn

1 )m = xr
0 +mxr−pn

0 xpn

1 + · · · mod (x0, x1)
r+1.

Hence m must be 1 and r = pn is a power of p.
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Definition 7. We call such n the strict height of q. We also let Height(q) to be the strict
height of q̃ : G0 → H0 over the special fiber. Finally, we define Height(G) to be Height([p] :
G → G).

Remark 4. Strict height is always not greater then height obviously. Moreover, we have
q∗(y) = g(xpn). This is because q∗(y) = f(x) must have no constant term due to the continu-
ity. If f ′(0) ̸= 0, which means f(x) = x + · · · , already meets the requirement. If f ′(0) = 0,
then the group law will force f ′(x) = 0, which implies f(x) = g(xp).

There is a geometric way to think of the strict height of a morphism f : G → H over X.
Since X is over Spec(Fp), we have a Frobenius map FX : X → X. The pullback F ∗

XG is also
a formal group. If we choose a coordinate x on G and the induced coordinate y on F ∗

XG,
then the formal group law on F ∗

XG is given by g(p)(y, y′), where g is the formal group law of
G under the coordinate x and g(p) is the series obtained from replacing coefficients gij in g
by gpij.

G
FG/X

!!

FW

  

q

##

F ∗
XG //

q

��

G
q

��
X

FX // X

The commutativity of Frobenius maps induces a map FG/X : G → F ∗
XG, which is also a

group homomorphism. Using the coordinates above, we have F ∗
G/X(y) = xp.

Now suppose f : G → H is a group homomorphism with f ∗(y) = g(xp) where x, y are
coordinates on G and H respectively. From the expression of f ∗(y), we know that f factors
through

G
FG/X−−−→ F ∗

XG → H.

The strict height of f corresponds to the height of the tower:

G

��

f

��

F ∗
XG

��

f1

��

...

��
(F n

X)
∗G

fn // H

Proposition 2. Let f : G → H be a nonzero homomorphism over X with Height(G) finite.
Then Height(G) = Height(H) and Height(f) is finite.

Proof. Just a direct computation. □
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3. Subschemes and Subgroups

Definition 8. A map f : X → Y is a closed inclusion, if f is a regular monomorphism, i.e.

it is the equalizer of Y → Y
∐

X Y in X̂ . A formal scheme X is a closed subscheme of Y if
f : X → Y is a closed inclusion and X is a subfunctor of Y .

Remark 5. Y
∐

X Y is the pushout via f : X → Y. In the category Top, a regular monomor-
phism is equivalent to an embedding.

Example 4. The map f : Spec(A/I) → Spec(A) induced by f ∗ : A → A/I is a closed
subscheme. First Spec(A/I)(R) is the set of all maps from A to R which vanish on I,
naturally a subset of Spec(A)(R). The equalizer of Spec(A) ⇒ Spec(A×A/I A) corresponds
to the coequalizer of A×A/I A ⇒ A, which is just A/I.
Conversely, Suppose f : Spec(A) → Spec(B) is a closed inclusion. Then f is the equalizer

of Spec(B) ⇒ Spec(C) which is equivalent to the spectrum of the coequalizer of C ⇒ B,
which is of the form B/I.

Example 5. Suppose Y is a closed subscheme of X, i.e. Y = Spec(A/I) and X = Spec(A).
The same argument implies that X∧

Y = Spf(A∧
I ) → X = Spec(A) is a closed inclusion.

Proposition 3. If X is a formal scheme, Y is a scheme, then f : X → Y is a closed
inclusion iff there are closed subschemes Yj such that X = colimj Yj.

Proof. Suppose X = colimj Yj, then from previous example, one has f is a closed inclusion.
Conversely, take a presentation X = colimiXi, it is easy to verify that the canonical map

Xj → X is a closed inclusion. Hence the composite Xj → Y is a closed inclusion, which
implies Xj is a closed subscheme of Y . □

To investigate in general a closed inclusion f : X → Y between formal schemes, we need

an understanding between categories X̂X and X̂Xi
.

Suppose {Xi} : J → X̂ is the filtered diagram with colimit X. Let D{Xi} be the category

Fun(J , X̂)/{Xi} and X̂{Xi} be the full subcategory of D{Xi} with each such diagram a
pullback for all arrows u : i → j in J .

Yi
Yu //

��

Yj

��
Xi

Xu // Xj

Clearly, we have a functor F : D{Xi} → X̂X defined by taking colimit, and G : X̂X → D{Xi}
via pullback.

Proposition 4. The functor F is left adjoint to G, and the functor G is full and faithful.

Moreover, G gives an equivalence between X̂X and X̂{Xi}.

Proof. A map from F{Yi} to Z over X is the same as a compatible system of maps {Yi → Z}
overX. Each Yi → X factors throughXi, therefore such a map is equivalent to Yi → Xi×XZ
over Xi and the system of such maps is just a map {Yi} → G(Z) in D{Xi}, which implies
the left adjointness.
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Note that FG(Y ) = colimJ Xi ×X Y and filtered colimits commutes with finite limits.
Hence colimJ Xi ×X Y = X ×X Y = Y . The fully faithfulness of G follows, as

D{Xi}(GX,GY ) = X̂X(FGX, Y ) = X̂(X, Y ).

The equivalence of categories follows from intuition but requires some work. □

According to this proposition, suppose F : X → Y is a closed inclusion, with Y solid.

Then f is equivalent to an element in X̂{Yi} with each Xi → Yi a closed inclusion, which
yields that each Xi is solid. Hence X = colimXi is again solid. This proves the following
conclusion.

Proposition 5. A closed subscheme of a solid formal scheme is again solid.

Proof. This follows from proposition 4. Moreover, suppose X is a solid formal subscheme of
solid formal subscheme Y , then we have OX = OY /J for some ideal J . □

Definition 9. Let C be a formal curve over X, i.e. C ∼= X×Â1 and D is a closed subscheme
of C. Suppose X is a scheme, we say D is a divisor of degree n if D is also a scheme and
OD a free module of rank n over OX . For general X, we say D is a divisor if for all scheme
X ′, D ×X X ′ is a divisor of C ×X X ′.

Now suppose X is a scheme with X = Spec(R). Choose a coordinate x on C, we have
C ∼= Spf(R[[x]]). Since D is a divisor of C, we have D = Spec(R[[x]]/J) for some ideal J
such that xk ∈ J for some k. Let λ(x) be the R-endomorphism of OD = R[[x]]/J given by
multiplying x and let fD(t) denote its characteristic polynomial.

Suppose D is of degree n, then fD(t) is a degree n monic polynomial. By Cayley-Hamilton,
fD(x) = 0 ∈ OD, which implies fD(x) ∈ J . While R[[x]]/fD(x) is also a free module of rank
n over R and OD is a quotient of it, which is also free of rank n. Hence OD = R[[x]]/fD(x).
Moreover, since xk ∈ J , if R is a field, we have fD(t) = tn. If R is not a field, by passing

to the fraction field of R/(p), we have all coefficients of fD(t) =
∑n

i=1 aix
i lies in (p) but

an = 1. Hence they actually lie in Nil(R).

Proposition 6. There is a formal scheme Div+n (C) over X, which classifies all effective

divisors of degree n on Y over X. Moreover, given a coordinate on C, Div+n (C) ∼= X × Ân.

Suppose n = 1, a divisor D here is just a section of C over X. Conversely, a section is of
course a closed subscheme of C which is finite and flat over X. Hence we have

Div+1 (C) = C

over X. The universal divisor Du over Div+1 (C) = C is a closed subscheme of C×XC. Given
a coordinate X on C, the polynomial fDu(t) = t− x.
If we have two divisors D and D′ over X, we define D +D′ to be the divisor corresponds

to fD(t)fD′(t). This defines a map

Div+m(C)×X Div+n (C) → Div+m+n(C),

which corresponds to

OX [[x0, x1]] → OX [[x, y]]

x0 7→ xy

x1 7→ x+ y
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when m,n equals 1.
Hence we have a map Cn

X/Σn → Div+n (C) for the commutativity of addition of divisors,
which is an isomorphism.

Proposition 7. The map Cn
X/Σn → Div+n (C) is an isomorphism, and the universal divisor

of degree n has the polynimial

fD(t) =
∏
k

(x− ak).

Proof. We work in the opposite category. Cn
X/Σn

∼= Spf(OX [[σ1, · · · , σn]]) where σi is the i
′th

elementary symmetric polynomial. The map Cn
X → Div+n (C) induces

ODiv+n (C) = OX [[a1, · · · , an]] → OX [[x1, · · · , xn]]

with ai sending to σi, the i
′th elementary polynomial. Therefore Div+n (C) is equal to Cn

X/Σn.
□

Definition 10. A subgroup of G is a divisor of G which is also a subgroup.

Proposition 8. Suppose K is a subgroup of G, then degree K is a power of p.

Proof. Since K is a subgroup, we know that OK
∼= Spf(OX [[x]]/fK(x)). We also have

K ×X K //

��

G×X G

µ

��
K // G.

The multiplication of K must factor through K. In another word,

OX [[t]] //

µ∗

��

OX [[t]]/fK(t)

��
OX [[x, y]] // OX [[x, y]]/(fK(x), fK(y)).

This means

fK(g(x, y)) = 0 mod fK(x), fK(y).

Now checking the coefficients like we already done after Example 3, the degree of fK must
be a power of p. □

Remark 6. The group structure also requires that the identity lies in K, this is the same as

X → G

factors through

X // K // G.

This is equivalent to require that fK(x) ∈ (x). Hence if K is a subgroup of G, we must have
fK is a polynomial of degree pr and divided by x, i.e. it has no constant terms.

Proposition 9. Suppose K is a subgroup of G with degree pm, then [p]mK = 0. Hence
K ≤ G(m) = ker([p]mG ).
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Proof. For any R, K(R) is a subgroup of G(R) = Nil(R), with elements satisfying the
relation fK = 0. All solutions of fK in R are automatically nilpotent for all coefficients of
fK are nilpotent. Suppose there are some solutions, say α, not in R. We can embed Nil(R)
into Nil(R[α]). So we can assume fK has all solutions in R. Hence K(R) is a group of order
pm. Thus any elements has order pm. In another words

G(R)
[p]m−−→ G(R), x 7→ [p]m(x) = x+G · · ·+G x

restricts to

K(R)
[p]m−−→ K(R), x 7→ [p]m(x) = 0.

□

Having define subgroups of a formal group, we then consider the quotient groups. As in
group theory, we define G/K to be the coequalizer

G×X K
µ //

π
// G // G/K.

On the level of functions, we have

OG/K
// OG

µ∗
//

π∗
// OG ⊗OX

OK .

Let x be a coordinate on G, and y be Nπµ
∗x ∈ OG.

Theorem. Let K be a subgroup of G with degree pm. The element y actually lies in OG/K,
which satisfies

(1) y = xpm mod mX .
(2) OG/K = OX [[y]]
(3) G/K has a natural structure as a formal group.

Proof. First notice that there is an automorphism θ from G×X K to it self, which sending
(a, b) to (a− b, b). Therefore π = µθ, and π finite flat implies µ finite flat. Now we have two
pullback diagrams with π′ forget the third component.

G×X K ×X K
µ×1 //

π′

��

G×X K

π

��

G×X K ×X K
1×µ //

π′

��

G×X K

π

��
G×X K

µ // G G×X K
π // G

The second one is a pullback for there is a unique automorphism extending the following
diagram

G×X K ×X K

��

1×µ

((
G×X K ×X K

π×1 // G×X K

which sends (a, b, c) to (a, b, b+ c).
The maps involved in above diagrams are all finite flat maps, therefore we have

µ∗Nπ = Nπ′(µ× 1)∗ , π∗Nπ = Nπ′(1× µ)∗.

Follow this and µ(1× µ) = µ(µ× 1) yields y ∈ OG/K .
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For (a), let j : K → G be the inclusion, and i : K → G ×X K with i(a) = (0, a). Hence
j = µi and πi = 0. We have the following.

K
i //

��

G×X K
µ //

π
��

G

X
0 // G

Now j∗y = i∗µ∗y = i∗π∗y = 0∗y = 0. This implies that y is divisible by fK .
Recall that y is the norm of µ∗x under π. After mod mX , fK(z) becomes zp

m
and we can

write µ∗x as
x+ a1(x)z + a2(x)z

2 + · · ·+ apm−1(x)z
pm−1 ∈ k[[x]][z]/zp

m

where k is the residue field of OX .
A direct computation implies

µ∗x(1, z, · · · , zpm−1) = (1, z, · · · , zpm−1)


x

a1(x) x
...

...
. . .

apm−1(x) apm−2(x) · · · x

 .

Therefore y = Nπµ
∗x = xpm mod mX . This completes (a). Moreover y is a unit multiple of

fK(x).
For part (b), suppose u ∈ OG/K . Consider the diagram

OG/K
//

0∗

��

OG

j∗

��
OX

// OK

The vertical map 0∗ is just taking constant terms. From this we know j∗(u − u(0)) = 0.
Hence u−u(0) is divided by y. We can write u = u(0)+u′y with u′ ∈ OG. Since u

′y ∈ OG/K ,
we conclude that π∗(u′y) = π∗(u′)π∗(y) = µ∗(u′y) = µ∗(u′)µ∗(y). The element π∗(y) = µ∗(y)
is not a zero divisor, which implies u′ ∈ OG/K . By induction, we have

OG/K = O[[y]].

Part (c) is obvious. G/K has the induced formal group law from G, with the coordinate y
induced from x. And the projection G → G/K is the category cokernel of K → G. □

4. Level Structures

Suppose there are Y and a formal group G over X, then Γ(Y,G), the set of all maps from
Y to G over X forms a group via

Y
(f,g)−−→ G×X G

µ−→ G.

In terms of functions, let x be a coordinate on G and a, b ∈ Γ(Y,G) corresponds to OX [[x]] →
OY , sending x to a, b in OY respectively, then the composite ab is given by

OX [[x]] → OX [[x, y]] → OY

x 7→ µ(x, y) 7→ µ(a, b),

where µ(x, y) is the corresponding formal group law over G associated to the coordinate x.
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One can check the identity element in Γ(Y,G) is

Y → X
0−→ G,

where 0 is the identity element of G.
To analyze this group, we can use other groups map to it, in particular, finite abelian

p−groups. This suggests us to consider the functor

Y → Hom (A,Γ(Y,G))

from (formal)schemes to sets.
Suppose A = Z/pk. A group homomorphism ϕ from A to Γ(Y,G) is determined by

s = ϕ(1) ∈ Γ(Y,G), which satisfies [pk]G(s) = 0. In terms of coordinates, let s denote the
map OX [[x]] → OY , sending x to s ∈ OY . Then [pk]G(s) = 0 requires the composite

Y
s−→ G

∆−→ G×X G×X · · · ×X G
µ−→ G

is identity in Γ(Y,G). In another words, the map

OX [[x]] → OX [[x]] → OY

x 7→ [pk]G(x) 7→ [pk]G(s)

should be zero. Therefore in this case, this functor is represented by the subgroup scheme

G(k) := ker([pk]G : G → G).

In general, let A =
∏r−1

k=0 Z/pdk . This functor, denoted by Hom(A,G), is also representable.

We have Hom(A,G) =
∏r−1

k=0G(dk) over X with

OHom(A,G) = OX [[x0, · · · , xr−1]]/([p
d0 ]G(x0), · · · , [pdr−1 ]G(xr−1)).

This is a finite free module over OX , hence Hom(A,G) is finite flat over X. If the height of
G is n, then the degree of Hom(A,G) over X is |A|n.

Y f

##

id

%%

s

$$
G×X Y //

��

G

��
Y // X

Given a map f : Y → G over X, we have a section s of G over Y and therefore a divisor
[s] of G over Y with degree 1. We define

[ϕA] :=
∑
a∈A

[ϕ(a)]

which is a divisor of degree |A|. We put A(k) := ker(pk : A → A). We also put Λ = (Qp/Zp)
n,

hence Λ(m) = (Z/pm)n.

Definition 11. A level-A structure on G over an X-scheme Y is a map ϕ : A → Γ(Y,G),
such that [ϕA(1)] ≤ G(1) as divisors. A level-m structure means a level-Λ(m) structure.


