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摘 要

摘 要

这篇硕士论文启发自拓扑空间之间的连续映射在同伦意义下的分类问题，由
此引出针对这种问题的计算方法的探究。着重介绍了两种重要尽管繁琐的计算工
具，分别是谱序列和上同调运算，并运用这些工具对一些例子进行了计算。论文的
第三章主要介绍了谱序列的构造和基本性质，研究了一种特别的谱序列——塞尔同
调及上同调谱序列。运用塞尔上同调谱序列重新计算了三维球面的四维同伦群，之
后通过引入塞尔类重新证明了除 0维外所有球面稳定同伦群都是有限交换群。第
四章的前半部分介绍了上同调运算，特别是斯廷罗德构造的斯廷罗德代数。它将
同调函子从拓扑空间范畴到环范畴推广为到斯廷罗德代数上的模范畴，而且保留
了之前的环结构。论文运用斯廷罗德代数重新计算了球面上正交切向量场的最大
个数的一个上界。另一个斯廷罗德代数的应用是亚当斯谱序列，用于计算两个拓
扑空间之间的由映射的稳定同伦类构成的群，以球面二维稳定同伦群的 2分量的
实际计算作为应用。第四章的后半部分独立于前半部分介绍了一种广义上同调理
论——K理论，以及它上面附带的上同调运算。运用它们可以得到代数拓扑中关于
霍普夫不变量为 1的经典定理以及实线性空间作为实数域上的可除代数的结论。

关键词：塞尔谱序列；亚当斯谱序列；上同调运算；稳定同伦群；K理论
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ABSTRACT

ABSTRACT

This thesis ismotivated by a classification problem of continuousmaps between topo-
logical spaces up to homotopy. For this purpose, it then turns to some computational
methods that are useful albeit complicated, namely, spectral sequences and cohomology
operations, and uses them to calculate with some interesting examples. Chapter 3 in-
troduces the general construction and properties of a spectral sequence, and specializes
these ideas to the Serre spectral sequences for homology and cohomology with explicit
constructions. We calculate 𝜋4(𝑆3) and reprove the finiteness of stable homotopy groups
in positive dimensions through an argument with the Serre classes. Chapter 4 introduces
a class of important operations on cohomology, carrying a lot of extra information and
structures than classical cohomology theories. They form the Steenrod algebras 𝒜𝑝 for 𝑝
a prime number. Their applications include giving an upper bound for orthogonal tangent
vector fields on spheres and Adams spectral sequences. The latter becomes an extremely
powerful tool in algebraic topology, calculating the stable homotopy classes of maps be-
tween two topological spaces. As an example, we calculate the 2-component of 𝜋𝑠

2. The
last two sections of Chapter 4 introduce K-theory as a generalized cohomology theory
and the Adams operations as its cohomology operations. Using them we deduce two clas-
sical facts in algebraic topology, namely, Adams’s theorem on Hopf invariants and the
classification of finite-dimensional division algebras over ℝ.

Keywords: Serre spectral sequence; Adams spectral sequence; cohomology operation;
stable homotopy group; K-theory
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

Algebraic topology is a branch of mathematics that uses tools from abstract algebra
to study topological spaces and continuous maps between them. The ultimate goal is to
classify all topological spaces up to homeomorphism using algebraic invariants, though
usually most classify up to homotopy equivalence. So the computation methods are sig-
nificant parts in algebraic topology.

The first concerned invariant of a space 𝑋, in some sense, is the fundamental group
𝜋1(𝑋), which roughly speaking is sort of loops in the space𝑋. Two loops are viewed as the
same if one can deform continuously to the other. After choosing a basepoint 𝑥0 in 𝑋, we
can equip the set of loops starting and ending at 𝑥0 a group structure, denoted by 𝜋1(𝑋, 𝑥0).
Henri Poincaré defined the fundamental group in 1895 in his paper ”Analysis situs”. The
concept emerged in the theory of Riemann surfaces, in the work of Bernhard Riemann,
Poincaré, and Felix Klein. It describes the monodromy properties of complex-valued
functions, as well as providing a complete topological classification of closed surfaces.
Even it is the simplest invariant in algebraic topology, the computation of fundamental
groups is not easy. Van Kampen’s theorem and covering space theory are basic tools for
computing it. Former allow us to decompose the fundamental group of 𝑋 into simpler
spaces whose fundamental groups are easier to obtain. The latter gives a correspondence
of all subgroups of 𝜋1(𝑋) and all covering spaces of 𝑋, which is surprisingly analog of
Galois correspondence.

The simplest invariant means it captures the least information of spaces. Funda-
mental groups only capture little information. For instance, 𝑆2 and 𝑆3 both have trivial
fundamental groups, but they are not homeomorphic. A more powerful tool called homol-
ogy was introduced by Henri Poincaré. The main idea is to count the ”holes” in a space
𝑋. It is more complicated than fundamental groups but fortunately we have more tools
to compute them. For example, simplicial homology, cellular homology. After that, we
have a nice version called singular homology which has its own advantage in theoretical
aspect. And these homology theories are coherent in most situations. Homology groups
are abelian, which makes one get comfortable comparing with nonabelian groups such
as fundamental groups. It can also detect higher dimensional information, we can use
homology to distinguish 𝑆2 from 𝑆3 in the previous example. In fact, we can use it to
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CHAPTER 1 INTRODUCTION

distinguish manifolds in different dimensions. Homology has many applications, such as
Brouwer fixed point theorem in all dimensions, degree of a map, hairy-ball theorem and
so on. But it is not enough, 𝑆1 ∨ 𝑆1 ∨ 𝑆2 and 𝑇 2 can not be distinguished by homology
theories, and they are not even homotopy equivalent.

Actually, there may not exist a perfect theory to detect all different spaces, at least for
now. To improve homology theories, algebraic topologists started to observe functions
from chain groups to a given group 𝐺. This leads to the dual conception of homology the-
ories, the cohomology theories. They are some abelian groups such as homology groups,
but there are more structures on cohomology theories, for instance, the cup product, which
endows a ring structure on a cohomology theory. One important structure is cohomology
operations, especially Steenrod squares and Steenrod powers, which gives a cohomology
theory 𝒜-module structure after the ring structure. Using these structures, we can detect
more information and classify spaces more accurately. We can never find that 𝑆2 ∨ 𝑆4 is
not homotopic equivalent to ℂℙ2 just using homology or additive structure of cohomol-
ogy. But when we look at the ring structure of cohomology, the power of each element in
H∗(𝑆2∨𝑆4; ℤ) is zero, while in H∗(ℂℙ2; ℤ), the generator has nontrivial power. Therefore
these two spaces is not homotopy equivalent. The basic tool for computing cohomology
groups is the universal coefficient theorem, which turns the computation of cohomology
groups into homology groups. So we can transparent computation methods for homology
into cohomology contributing to the universal coefficient theorem. The computation for
cohomology operations requires much more work.

The last classical one is called homotopy group 𝜋𝑛. It is the generalization of the
fundamental group, 𝜋𝑛(𝑋), the n dimensional homotopy group. It is abelian when 𝑛 ⩾ 2.
Homotopy groups are very hard to compute due to the failure of excision. Even for
the the simplest space 𝑆 𝑖, we do not have a conclusion for its homotopy groups for ar-
bitrary 𝑖. Tools for computing homotopy groups are various, such as Freudental sus-
pension theorem, covering space, Hurewicz theorem, fiber bundles, fibrations and so
on. Hurewicz theorem provides the relation between homotopy groups and homology
groups. As for cohomology, there is a nice theorem saying that there are natural bi-
jiections 𝑇 ∶ ⟨𝑋, 𝐾(𝐺, 𝑛)⟩ → H𝑛(𝑋; 𝐺) from the set of homotopy classes preserving
the base-point from 𝑋 to the Eilenberg-MacLane space 𝐾(𝐺, 𝑛) to the n-th cohomology
group of 𝑋 with coefficient group 𝐺. Fiber bundle 𝐹 → 𝐸 → 𝐵 provides the long exact
sequence just like in homology for pairs 𝐴 → 𝑋 → 𝑋\𝐴. Freudental suspension theorem

2



CHAPTER 1 INTRODUCTION

says the suspension map 𝜋𝑖(𝑋) → 𝜋𝑖+1(𝑆𝑋) is isomorphic when 𝑖 < 2𝑛 − 1 and 𝑋 be-
ing (n-1)-connected CW complexes. This theorem tells us these maps will eventually be
isomorphisms even there is no assumption on the connectivity of 𝑋.

𝜋𝑖(𝑋) → 𝜋𝑖+1(𝑆𝑋) → 𝜋𝑖+2(𝑆2𝑋) → ⋯.
We call this eventually stable group the stable homotopy group of 𝑋, denoted by 𝜋𝑠

𝑖 (𝑋).
The calculation of the i-th stable homotopy group 𝜋𝑠

𝑖 = 𝜋𝑠
𝑖 (𝑆0) is an important problem.

Serre used spectral sequence showing that 𝜋𝑠
𝑖 is always finite for 𝑖 > 0, and Adams spectral

sequence obtained the result of 𝜋𝑠
𝑖 for small 𝑖.

This article will be divided in two parts. The first part is the introduction to gen-
eral spectral sequence, and use it to deduce some basic results as examples. The second
part is about cohomology operations, including Steenrod operations and Adams opera-
tions. Adams spectral sequence will be the application of Steenrod operations in spectral
sequence, and wewill use it to calculate some famous examples. As I just said, thesemeth-
ods are tedious and hard to understand, but it worth the efforts. Once accepting them, one
will get amazed by their magic power!

3
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CHAPTER 2 MOTIVATIONS

As explained in chapter 1, algebraic topology translates a geometric problem into
a homotopy theory problem, then using algebraic tools solving them. The first step is
slightly easier then the second step. Starting with a general situation. Let [𝑋, 𝑌 ] be the ho-
motopy classes of maps between𝑋 and 𝑌 . Onemay ask whether amap 𝑓 ∶ 𝑋 → 𝑌 is null
homotopic or essential, that is, not null homotopic? One way to achieve this is applying re-
duced mod 2 cohomology 𝐻̃∗(−, ℤ2). If 𝑓 induces 𝑓 ∗ ∈ Hom (𝐻̃∗(𝑌 ; ℤ2), 𝐻̃∗(𝑋; ℤ2))
nontrivial, then 𝑓 must be essential. But this method is too coarse. Consider the following
example.

Let 𝑋, 𝑌 be 𝑆1 and 𝑓 be the squaring map. Cohomology with ℤ coefficients de-
tects 𝑓 is essential, with degree 2. But passing to ℤ2 coefficients, the reduced mod 2
cohomology becomes invalid. Fortunately, we have a chance to repair it.

Consider maps 𝑋 𝑓−→ 𝑌 → 𝑌 ∪𝑓 𝐶𝑋 and induces a long exact sequence in coho-
mology. If 𝑓 induces 0 in mod 2 cohomology, then the exact sequence splits into a short
exact sequence:

0 ← 𝐻̃∗(𝑌 ; ℤ2) ← 𝐻̃∗(𝑌 ∪𝑓 𝐶𝑋; ℤ2) ← 𝐻̃∗(𝑆𝑋; ℤ2) ← 0

Now if 𝑓 is null homotopic, then 𝑌 ∪𝑓 𝐶𝑋 ≃ 𝑌 ∨ 𝑆𝑋. And this sequence splits. Hence
𝐻̃∗(𝑌 ∪𝑓 𝐶𝑋; ℤ2) ≅ 𝐻̃∗(𝑌 ∨ 𝑆𝑋; ℤ2). Our chance is using the ring strucure of co-
homology. Therefore, we have 𝐻̃∗(ℝℙ2; ℤ2) ≅ 𝐻̃∗(𝑆1 ∨ 𝑆2; ℤ2) as ring isomorphism,
contradiction.

Do not get satisfied too early. When passing to 𝑆𝑓 ∶ 𝑆2 → 𝑆2, the modified method
becomes invalid again, since suspension isomorphism 𝐻̃ 𝑖(𝑋; ℤ2) ≅ 𝐻̃ 𝑖+1(𝑆𝑋; ℤ2) does
not preserve the ring structure. But don’t get frustrated, we can still repair our method,
though it needs more efforts.

The ring structure is not enough to get over this obstruction. We need something
called Steenrod algebra 𝒜2, which consists of Steenrod squares which are stable under
suspension. The mod 2 cohomology, then becomes a 𝒜2-module. And this new structure
can help us.

To summarize,
1. Consider 𝑓 ∗ ∈ Hom (𝐻̃∗(𝑌 ; ℤ2), 𝐻̃∗(𝑋; ℤ2)), and if it is zero,
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2. Consider 𝐻̃∗(𝑌 ∪𝑓 𝐶𝑋; ℤ2) as an element of Ext1𝒜2
(𝐻̃∗(𝑌 ; ℤ2); 𝐻̃∗(𝑆𝑋; ℤ2)).

If it is unfortunately zero again, then we have some way to continuing such step, which
leads to the Adams spectral sequences. Before introducing all concepts and main theories,
let me explain two cases the method fails destined.

The first case is the suspension destroys 𝑓 . Hence all we can detect using this method
is the set [𝑆𝑘𝑋, 𝑆𝑘𝑌 ] for large 𝑘. The Freudental suspension theorem implies that this
group is stable for 𝑘 > dim 𝑋 + 2. 2 ensures that this group is abelian. Denote this group
as {𝑋, 𝑌 }.

The second case is that this method can only detect mod2 phenomenon. For instance,
3𝑓 ≃ 0, then it tells you 𝑓 is null homotopic.

Fortunately, this method has these two blindness only. As it will explain in chapter
4. The next chapter introduces general spectral sequences, and the last two chapters give
some interesting examples of its own, inspite of our original motivation.
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CHAPTER 3 SPECTRAL SEQUENCES

Exact sequences are important tools in algebraic topology, but sometimes their com-
plicated relations could not fit into exact sequences. Thus more tools will be needed. The
spectral sequences arise in a natural way.

3.1 Bicomplexes

Bicomplexes provide a perfect stage for spectral sequences. So we will start with
bicomplexes.
Definition 3.1: A graded module is an indexed collection 𝑀 = (𝑀𝑝)𝑝∈ℤ of 𝑅-modules
(for some ring 𝑅), denoted by 𝑀• for convenience.
Example 3.1:

1. A complex (𝒞, ∂) is a graded module.
2. Homology 𝐻•(𝒞) of a complex is a graded module.

Definition 3.2: A graded map of degree 𝑎, denoted by 𝑓 ∶ 𝑀 → 𝑁 , is a collection of
maps 𝑓 = (𝑓𝑝 ∶ 𝑀𝑝 → 𝑁𝑝+𝑎)𝑝∈ℤ where 𝑀, 𝑁 are graded modules and 𝑎 ∈ ℤ. Denote
the degree of 𝑓 by deg 𝑓 = 𝑎.
Example 3.2:

1. The differential of a complex is a graded map with degree -1.
2. A chain map 𝑓 ∶ 𝒞 → 𝒞′ is a graded map with deg 𝑓 = 0.
We can define Hom(𝑀, 𝑁) to be

Hom(𝑀, 𝑁) = ⋃𝑎∈ℤ(∏𝑝 Hom(𝑀𝑝, 𝑁𝑝+𝑎),
then graded modules over a fixed ring form a category.

𝑀′ is a submodule of 𝑀 means 𝑀𝑝′ ⊂ 𝑀𝑝 for all 𝑝. If 𝑀′ is a submodule of
𝑀 , then the quotient module 𝑀/𝑀′ = (𝑀𝑝/𝑀𝑝′)𝑝∈ℤ. It is obvious that both inclusions
and natural quotient maps have degree 0. For graded map 𝑓 ∶ 𝑀 → 𝑁 with degree 𝑎,
ker 𝑓 = (ker 𝑓𝑝)𝑝∈ℤ ⊂ 𝑀 , im𝑓 = (im𝑓𝑝−𝑎)𝑝∈ℤ ⊂ 𝑁 . Therefore, 𝐴 𝑓−→ 𝐵 𝑔−→ 𝐶 is exact if
im𝑓 = ker 𝑔.

Foe 0 → 𝒞′ 𝑖−→ 𝒞 𝑗−→ 𝒞′′ → 0 a short exact sequence of complexes, the long exact

6



CHAPTER 3 SPECTRAL SEQUENCES

sequence of their homology modules can be summarized as an exact triangle:

𝐻•(𝒞) 𝑖∗ // 𝐻•(𝒞′)

𝑗∗yysss
sss

sss
s

𝐻•(𝒞′′),
∂

eeKKKKKKKKK

where each vertex is a graded module, and maps are exactly graded maps: deg 𝑖∗ =
deg 𝑗∗ = 0, and deg ∂ = −1.

Bigraded modules are something generalizing graded modules.
Definition 3.3: A bigraded module is a indexed collection

𝑀 = (𝑀𝑝,𝑞)(𝑝,𝑞)∈ℤ×ℤ

of 𝑅−modules, denoted by 𝑀••.
Definition 3.4: Suppose𝑀 and𝑁 are bigradedmodules, and (𝑎, 𝑏) ∈ ℤ×ℤ. A bigraded
map of bidegree (𝑎, 𝑏), represent by 𝑓 ∶ 𝑀 → 𝑁 , is a collection of maps 𝑓 = (𝑓𝑝,𝑞 ∶
𝑀𝑝,𝑞 → 𝑁𝑝+𝑎,𝑞+𝑏)(𝑝,𝑞)∈ℤ×ℤ. Denote the bidegree of 𝑓 by deg 𝑓 = (𝑎, 𝑏).

Just like graded modules, we can define morphisms between two bigraded modules
𝑀, 𝑁 to form a category. The definition for submodules, quotient modules and exactness
of bigraded modules is something analogue to graded modules. A bicomplex is a bigraded
module with all maps being differentials.
Definition 3.5: A bicomplex is an ordered triple (𝑀, 𝑑′, 𝑑′′),where 𝑀 is a bigraded
module, 𝑑′, 𝑑′′ ∶ 𝑀 → 𝑀 are differentials with deg 𝑑′ = (−1, 0) and deg 𝑑′′ = (0, −1),
and

𝑑′
𝑝,𝑞−1𝑑′′

𝑝,𝑞 + 𝑑′′
𝑝−1,𝑞𝑑′

𝑝,𝑞 = 0.
A bicomplex 𝑀 can be drawn in the 𝑝𝑞−plane with 𝑀𝑝,𝑞 lying on point (𝑝, 𝑞). The

rows 𝑀∗,𝑞 and the columns 𝑀𝑝,∗ are complexes. The equation 𝑑′
𝑝,𝑞−1𝑑′′

𝑝,𝑞 + 𝑑′′
𝑝−1,𝑞𝑑′

𝑝,𝑞 = 0
says that each square anticommutes. (Fig. 3.1(a))
Remark 3.1: It doesn’t matter one get confused about the anticommutativity at the first
glance, since we can always transform a commutative bigraded module with differentials
𝑑′, 𝑑′′ into a bicomplex. All one needs to do is a sign change. Let 𝛥′′

𝑝,𝑞 = (−1)𝑝𝑑′′
𝑝,𝑞.

Kernels and images are not affected by changing signs, thus 𝛥′′𝛥′′ = 0, the columns are
still complexes. As for anticommutativity:

𝑑′
𝑝,𝑞−1𝛥′′

𝑝,𝑞 + 𝛥′′
𝑝−1,𝑞𝑑′

𝑝,𝑞 = (−1)𝑝𝑑′
𝑝,𝑞−1𝑑′′

𝑝,𝑞 + (−1)𝑝−1𝑑′′
𝑝−1,𝑞𝑑′

𝑝,𝑞

= (−1)𝑝(𝑑′
𝑝,𝑞−1𝑑′′

𝑝,𝑞 − 𝑑′′
𝑝−1,𝑞𝑑′

𝑝,𝑞)

= 0.
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a) Bicomplex. b) Total complex.

Figure 3-1 [1]

Therefore, (𝑀, 𝑑′, 𝛥′′) is a bicomplex.
Definition 3.6: If 𝑀 is a bicomplex, its total complex, Tot(𝑀), is the complex whose
𝑛th term

𝑇 𝑜𝑡(𝑀)𝑛 = ⨁𝑝+𝑞=𝑛
𝑀𝑝,𝑞

and with differentials 𝐷𝑛 ∶ Tot(𝑀)𝑛 → Tot(𝑀)𝑛−1 given by

𝐷𝑛 = ∑𝑝+𝑞=𝑛
(𝑑′

𝑝,𝑞 + 𝑑′′
𝑝,𝑞)

(Fig. 3.1(b)).
The total complex (Tot(𝑀),𝐷) is indeed a complex. Since im𝑑′

𝑝,𝑞 ⊂ 𝑀𝑝−1,𝑞 and
im𝑑′

𝑝,𝑞′ ⊂ 𝑀𝑝,𝑞−1; no matter in which case, the sum of indices will be 𝑝 + 𝑞 − 1 = 𝑛 − 1,
thus im𝐷 ⊂ Tot(𝑀)𝑛−1.

As for 𝐷 is a differential:

𝐷𝐷 = ∑𝑝,𝑞
(𝑑′ + 𝑑′′)(𝑑′ + 𝑑′′)

= ∑ 𝑑′𝑑′ + ∑(𝑑′𝑑′′ + 𝑑′′𝑑′) + ∑ 𝑑′′𝑑′′

= 0.

Spectral sequences can be used to compute the homology of a total complex Tot(𝑀).
Before the really computation, we shall see some example first.
Example 3.3:

8
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1. Let 𝑅 be a ring, and suppose

A =→ 𝐴𝑝
𝛥′

𝑝−−→ 𝐴𝑝−1 → ⋯ → 𝐴0 → 0

and

B =→ 𝐵𝑞
𝛥′′

𝑞−−→ 𝐵𝑞−1 → ⋯ → 𝐵0 → 0

are complexes. Define (M, 𝑑′, 𝑑′′) by
𝑀𝑝,𝑞 = 𝐴𝑝 ⊗𝑅 𝐵𝑞, 𝑑′

𝑝,𝑞 = 𝛥′
𝑝 ⊗ 1𝐵𝑞 , and 𝑑′′

𝑝,𝑞 = (−1)𝑝1𝐴𝑝 ⊗ 𝛥′′
𝑞 .

This is a bicomplex, the total complex denoted by Tot(𝑀) = A ⊗ B is called the
tensor product of complexes.

(A ⊗ B)𝑛 = ⨁𝑝+𝑞=𝑛
𝐴𝑝 ⊗𝑅 𝐵𝑞,

and 𝐷𝑛 ∶ (A ⊗ B)𝑛 → (A ⊗ B)𝑛−1 is given by

𝐷𝑛 ∶ 𝑎𝑝 ⊗ 𝑏𝑞 ↦ 𝛥′𝑎𝑝 ⊗ 𝑏𝑞 + (−1)𝑝𝑎𝑝 ⊗ 𝛥′′
𝑞 𝑏𝑞.

Definition 3.7: A first quadrant bicomplex is a bicomplex with 𝑀𝑝,𝑞 = 0 when-
ever 𝑝 or 𝑞 is negative.

2. Let 𝐴, 𝐵 be 𝑅−modules, and let P𝐴, Q𝐵 be deleted projective resolutions. By 1,
we yield a bicomplex, and this example will help us to prove the Tor functor is
independent of which variable performing resolution.

3. The Eilenberg-Zilber Theorem says that

𝐻𝑛(𝑋 × 𝑌 ) ≅ 𝐻𝑛(S•(𝑋) ⊗ℤ S•(𝑌 )),

where𝑋 and 𝑌 are topological spaces and S•(𝑋) is the singular complex of𝑋. And
we can use spectral sequence to prove the Kunneth formula.

3.2 Exact Couples

Supposewe have a filtration (𝐹 𝑝𝒞)𝑝∈ℤ of complex 𝒞, that is the commutative diagram
with the vertical maps being inclusions and the horizontal maps differentials.

𝒞 ∶ // 𝐶𝑛+1 // 𝐶𝑛 // 𝐶𝑛−1 //

𝐹 𝑝𝒞 ∶ // 𝐹 𝑝
𝑛+1

//

⋮
OO

𝐹 𝑝
𝑛 //

⋮
OO

𝐹 𝑝
𝑛−1

//

⋮
OO

𝐹 𝑝−1𝒞 ∶ // 𝐹 𝑝−1
𝑛+1

//

OO

𝐹 𝑝−1
𝑛 //

OO

𝐹 𝑝−1
𝑛−1

//

OO

9
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Abbreviate 𝐹 𝑝𝒞 to 𝐹 𝑝. For each fiexed 𝑝, there is a short exact sequence of com-
plexes,

0 // 𝐹 𝑝−1 𝑖𝑝−1
// 𝐹 𝑝 𝑗𝑝

// 𝐹 𝑝/𝐹 𝑝−1 // 0

that gives a long exact sequence

// 𝐻𝑛(𝐹 𝑝−1) 𝛼 // 𝐻𝑛(𝐹 𝑝) 𝛽 // 𝐻𝑛(𝐹 𝑝/𝐹 𝑝−1) 𝛾 //

𝐻𝑛−1(𝐹 𝑝−1) 𝛼 // 𝐻𝑛−1(𝐹 𝑝) 𝛽 // 𝐻𝑛−1(𝐹 𝑝/𝐹 𝑝−1) // ,

where 𝛼 = 𝑖𝑝−1
∗ , 𝛽 = 𝑗𝑝

∗ , and 𝛾 = ∂. Let 𝑝 + 𝑞 = 𝑛, we can rewrite this sequence as

// 𝐻𝑝+𝑞(𝐹 𝑝−1) 𝛼 / / 𝐻𝑝+𝑞(𝐹 𝑝) 𝛽 // 𝐻𝑝+𝑞(𝐹 𝑝/𝐹 𝑝−1) 𝛾 //

𝐻𝑝+𝑞−1(𝐹 𝑝−1) 𝛼 // 𝐻𝑝+𝑞−1(𝐹 𝑝) 𝛽 // 𝐻𝑝+𝑞−1(𝐹 𝑝/𝐹 𝑝−1) // .

Observing that there are two types of homology groups: 𝐻𝑛(𝐹 𝑝) and 𝐻𝑛(𝐹 𝑝/𝐹 𝑝−1). De-
fine

𝐷 = (𝐷𝑝,𝑞), where 𝐷𝑝,𝑞 = 𝐻𝑝+𝑞(𝐹 𝑝),

𝐸 = (𝐸𝑝,𝑞), where 𝐸𝑝,𝑞 = 𝐻𝑝+𝑞(𝐹 𝑝/𝐹 𝑝−1).

With these notation, we can summarize all long exact sequences here, i.e. for each 𝑝, as
an exact couple [2].
Definition 3.8: An exact couple is an ordered tuple (𝐷, 𝐸, 𝛼, 𝛽, 𝛾), with 𝐷, 𝐸 beg-
ing bigraded modules, 𝛼, 𝛽, 𝛾 being bigraded maps. And at each vertex, maps are exact:
ker 𝛼 = im𝛾 , ker 𝛽 = im𝛼, ker 𝛾 = im𝛽.

𝐷 𝛼 // 𝐷

𝛽~~~~
~~
~~
~~

𝐸
𝛾

``@@@@@@@@

Using the notation above, every filtration (𝐹 𝑝𝒞)𝑝∈ℤ of a complex 𝒞 will provide an
exact couple

𝐷 𝛼(1,−1) // 𝐷

𝛽(0,0)~~~~
~~
~~
~~

𝐸
𝛾(−1,0)

``@@@@@@@@

Definition 3.9: A differential bigraded module is an ordered pair (𝑀, 𝑑), where 𝑀 is a
bigraded module and 𝑑 ∶ 𝑀 → 𝑀 is a differential. Suppose deg 𝑑 = (𝑎, 𝑏), the homology
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𝐻(𝑀, 𝑑) is then a bigraded module with 𝑝, 𝑞 term

𝐻(𝑀, 𝑑)𝑝,𝑞 =
ker 𝑑𝑝,𝑞

im𝑑𝑝−𝑎,𝑞−𝑏
.

A bicomplex (𝑀, 𝑑′, 𝑑′′) yields two differential bigraded modules, (𝑀, 𝑑′) and
(𝑀, 𝑑′′).
Proposition 3.1: If (𝐷, 𝐸, 𝛼, 𝛽, 𝛾) is an exact couple, then 𝑑1 = 𝛽𝛾 is a differential
𝑑1 ∶ 𝐸 → 𝐸, and there is an exact couple (𝐷2, 𝐸2, 𝛼2, 𝛽2, 𝛾2) called the derived couple,
with 𝐸2 = 𝐻(𝐸, 𝑑1).

𝐷2 𝛼2
// 𝐷2

𝛽2~~||
||
||
||

𝐸2
𝛾2

``BBBBBBBB

Proof: We just look into the case of exact couple coming from the filtration of a complex,
where deg 𝛼 = (1, −1), deg 𝛽 = (0, 0), deg 𝛾 = (−1, 0). First, verify that 𝑑1 is a differen-
tial: 𝑑1𝑑1 = 𝛽(𝛾𝛽)𝛾 = 0, by the exactness of the original couple. deg 𝑑1 = (−1, 0).

Define 𝐸2 = 𝐻(𝑀, 𝑑1). Thus, 𝐸2
𝑝,𝑞 = ker 𝑑1

𝑝,𝑞/ im𝑑1
𝑝+1,𝑞.

Define 𝐷2 = im 𝛼 ⊂ 𝐷. Thus, 𝐷2
𝑝,𝑞 = im 𝛼𝑝−1,𝑞+1 ⊂ 𝐷𝑝,𝑞.

We now define maps.
Let 𝛼2 ∶ 𝐷2 → 𝐷2 to be the restriction 𝛼|𝐷2. Clearly, deg 𝛼2 = deg 𝛼 = (1, −1). If

𝑥 ∈ 𝐷2
𝑝,𝑞, then 𝑥 = 𝛼𝑢 for 𝑢 ∈ 𝐷𝑝−1,𝑞+1, and

𝛼2
𝑝,𝑞 ∶ 𝑥 = 𝛼𝑢 ↦ 𝛼𝑥 = 𝛼𝛼𝑢

Define 𝛽2 ∶ 𝐷2 → 𝐸2 as follows. If 𝑦 ∈ 𝐷2
𝑝,𝑞, then 𝑦 = 𝛼𝑣 for some 𝑣 ∈ 𝐷𝑝−1,𝑞+1

and 𝛽𝑣 is a cycle for 𝑑1𝛽𝑣 = 𝛽(𝛾𝛽)𝑣 = 0. Hence

𝛽2 ∶ 𝑦 ↦ cls(𝛽𝑣).

we shall verify 𝛽2 is well-defined. Suppose 𝑦 = 𝛼𝑣′, then 𝑣 − 𝑣′ ∈ ker 𝛼 = im 𝛾 . Thus
there is 𝜔 ∈ 𝐷𝑝+1,𝑞−1 with 𝛾𝜔 = 𝑣 − 𝑣′. Therefore 𝛽(𝑣 − 𝑣′) = 𝛽𝛾𝜔 = 𝑑1𝜔 is a boundary.
Note that deg 𝛽2 = (−1, 1)

Define 𝛾2 ∶ 𝐸2 → 𝐷2 as follows. Let cls(𝑧) ∈ 𝐸2
𝑝,𝑞, thus 𝑑1(𝑧) = 𝛽𝛾𝑧 = 0.

𝛾𝑧 ∈ ker 𝛽 = im 𝛼. Define 𝛾2 by

𝛾2 ∶ cls (𝑧) ↦ 𝛾𝑧.

If 𝜔 is a boundary, that is 𝜔 ∈ im 𝑑1
𝑝+1,𝑞−1, 𝜔 = 𝑑1𝑥 = 𝛽𝛾𝑥. Then 𝛾2cls(𝜔) = 𝛾𝛽𝛾𝑥 = 0.

Hence 𝛾2 is independent of the choice of representatives. Note that deg 𝛾2 = (−1, 0).

11
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What remains is to verify the exactness at each vertex. First of all, adjacent compos-
ites are 0.

𝛽2𝛼2 ∶ 𝑥 = 𝛼𝑢 ↦ 𝛼𝛼𝑢 ↦ cls (𝛽𝛼𝑢) = 0.

𝛾2𝛽2 ∶ 𝑥 = 𝛼𝑢 ↦ cls (𝛽𝑢) ↦ 𝛾𝛽𝑢 = 0.

𝛼2𝛾2 ∶ cls (𝑧) ↦ 𝛾𝑧 ↦ 𝛼𝛾𝑧 = 0.

ker 𝛼2 ⊂ im 𝛾2: If 𝑥 ∈ ker 𝛼2, then 𝛼𝑥 = 0 ∈ 𝐷2. Hence 𝑥 ∈ ker 𝛼 = im 𝛾 , thus there
is a 𝑦 ∈ 𝐸 with 𝑥 = 𝛾𝑦. And 𝑥 ∈ 𝐷2 = im 𝛼 = ker 𝛽, 𝛽𝑥 = 𝛽𝛾𝑦 = 𝑑1𝑦 = 0, hence
cls(𝑦) ∈ 𝐸2 with 𝑥 = 𝛾𝑦 = 𝛾2cls (𝑦) ∈ im 𝛾2.
ker 𝛽2 ⊂ im 𝛼2: If 𝑥 ∈ ker 𝛽2, 𝑥 = 𝛼𝑣 with 𝛽𝑣 ∈ im 𝑑1. That is 𝛽𝑣 = 𝑑1𝜔 = 𝛽𝛾𝜔. Hence
𝑣 − 𝛾𝜔 ∈ ker 𝛽 = im 𝛼 = 𝐷2. Notice that 𝛼2(𝑣 − 𝛾𝜔) = 𝛼𝑣 − 𝛼𝛾𝜔 = 𝛼𝑣 = 𝑥, therefore
𝑥 ∈ im 𝛼2.
ker 𝛾2 ⊂ im 𝛽2: If cls(𝑧) ∈ ker 𝛾2, 𝛾𝑧 = 0, thus 𝑧 ∈ ker 𝛾 = im 𝛽, 𝑧 = 𝛽𝑣 for some 𝑣 ∈ 𝐷.
Observe that 𝛼𝑣 ∈ 𝐷2 so, cls(𝑧) = 𝛽2(𝛼𝑣) ∈ im 𝛽2. ∎
Definition 3.10: The rth derived couple of an exact couple (𝐷, 𝐸, 𝛼, 𝛽, 𝛾) induc-
tively: its (𝑟 + 1)st derived couple (𝐷𝑟+1, 𝐸𝑟+1, 𝛼𝑟+1, 𝛽𝑟+1, 𝛾𝑟+1) is the derived couple
of (𝐷𝑟, 𝐸𝑟, 𝛼𝑟, 𝛽𝑟, 𝛾𝑟), the 𝑟th derived couple.
Theorem 3.1: Let (𝐷, 𝐸, 𝛼, 𝛽, 𝛾) be the couple of a filtration (𝐹 𝑝𝒞).

𝐷 (1,−1)
𝛼

// 𝐷

(0,0)
𝛽
��~~
~~
~~
~~

𝐷𝑟 (1,−1)
𝛼𝑟

// 𝐷𝑟

(1−𝑟,𝑟−1)
𝛽𝑟

}}{{
{{
{{
{{

𝐸
(−1,0)

𝛾
__@@@@@@@@

𝐸𝑟
(−1,0)

𝛾𝑟aaCCCCCCCC

Then:
1. the bigraded maps 𝛼𝑟, 𝛽𝑟, 𝛾𝑟 have bidegrees (1, −1), (1 − 𝑟, 𝑟 − 1), (−1, 0), respec-

tively;
2. the differential 𝑑𝑟 = 𝛽𝑟𝛾𝑟 has bidegree (−𝑟, 𝑟 − 1);
3. 𝐸𝑟+1 = 𝐻(𝐸𝑟, 𝑑𝑟);
4. 𝐷𝑟

𝑝,𝑞 = im (𝛼𝑝−1,𝑞+1)(𝛼𝑝−2,𝑞+2) ⋯ (𝛼𝑝−𝑟+1,𝑞+𝑟−1); in particular, for the exact couple
in the beginning of this section,

𝐷𝑟
𝑝,𝑞 = im (𝑖𝑝−1𝑖𝑝−2 ⋯ 𝑖𝑝−𝑟+1)∗ ∶ 𝐻𝑛(𝐹 𝑝−𝑟+1) → 𝐻𝑛(𝐹 𝑝).

Proof: The proof of this theorem is trivial by induction. Also notice that 𝑑1
𝑝,𝑞 ∶ 𝐸𝑝,𝑞 →

𝐸𝑝−1,𝑞 is the last circumstance is the connecting homomorphism ∂

𝐻𝑝+𝑞(𝐹 𝑝/𝐹 𝑝−1) → 𝐻𝑝+𝑞−1(𝐹 𝑝−1/𝐹 𝑝−2)
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arising from 0 → 𝐹 𝑝−1/𝐹 𝑝−2 → 𝐹 𝑝/𝐹 𝑝−2 → 𝐹 𝑝/𝐹 𝑝−2 → 0. ∎
Definition 3.11: A spectral sequence is a collection (𝐸𝑟, 𝑑𝑟)𝑟⩾1 of differential bigraded
modules such that 𝐸𝑟+1 = 𝐻(𝐸𝑟, 𝑑𝑟) for all 𝑟. By previous discussion, every filtration of
a complex provides a spectral sequence.

3.3 Convergence

Theorem 3.1 states that a filtration of complex 𝒞 provides a spectral sequence, but
what is the connection between the 𝐸𝑟 term of the spectral sequence and the homology of
𝐻•(𝒞)?

If (𝐸𝑟, 𝑑𝑟) is a spectral sequence, then 𝐸2 = 𝐻•(𝐸1, 𝑑1) is a subquotient of 𝐸1:
hence, 𝐸2 = 𝑍2/𝐵2, where

𝐵2 ⊂ 𝑍2 ⊂ 𝐸1.

And 𝑍3, 𝐵3 can be viewed as quotients 𝐵3/𝐵2 ⊂ 𝑍3/𝐵2 ⊂ 𝑍2/𝐵2 = 𝐸2, so that

𝐵2 ⊂ 𝐵3 ⊂ 𝑍3 ⊂ 𝑍2 ⊂ 𝐸1.

Continuing such steps, for each 𝑟, there is a chain

𝐵2 ⊂ ⋯ ⊂ 𝐵𝑟 ⊂ 𝑍𝑟 ⊂ ⋯ ⊂ 𝑍2 ⊂ 𝐸1.

Definition 3.12: Given a spectral sequence 𝐸𝑟, 𝑑𝑟, define 𝑍∞ = ∩𝑟𝑍𝑟 and 𝐵∞ = ∪𝑟𝐵𝑟.
Then 𝐵∞ ⊂ 𝑍∞, the limit term is defined by

𝐸∞
𝑝,𝑞 = 𝑍∞

𝑝,𝑞 / 𝐵∞
𝑝,𝑞.

Clearly, 𝐸𝑟+1 = 𝐸𝑟 iff 𝑍𝑟+1 = 𝑍𝑟 and 𝐵𝑟+1 = 𝐵𝑟; and if 𝐸𝑟+1 = 𝐸𝑟 for all 𝑟 ⩾ 𝑠,
then 𝐸𝑠 = 𝐸∞.
Definition 3.13: Let (𝐹 𝑝(𝒞) be a filtration of a complex 𝒞. Let 𝑖𝑝 ∶ 𝐹 𝑝 → 𝒞 be the
inclusions, define the induced filtration of 𝐻𝑛(𝒞) to be

𝛷𝑝𝐻𝑛(𝒞) = im 𝑖𝑝
∗.

Definition 3.14: A filtration (𝐹 𝑝𝑀) of a graded module 𝑀 = (𝑀𝑛) is bounded if , for
any 𝑛, we can find integers 𝑠 = 𝑠(𝑛), 𝑡 = 𝑡(𝑛) such that

𝐹 𝑠𝑀𝑛 = 0 and 𝐹 𝑡𝑀𝑛 = 𝑀𝑛.
If 𝐹 𝑝 is a bounded filtration of a complex, the induced filtration on homology of that

complex will be bounded as well. Moreover, their bounds are equal.
Definition 3.15: A spectral sequence (𝐸𝑟, 𝑑𝑟)𝑟⩾1 converges to 𝐻 , a graded module,

13
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denoted by

𝐸2
𝑝,𝑞 ⇒

𝑝
𝐻𝑛,

if there is some bounded filtration (𝛷𝑝𝐻𝑛) of 𝐻 with

𝐸∞
𝑝,𝑞 ≅ 𝛷𝑝𝐻𝑛 / 𝛷𝑝−1𝐻𝑛

for any 𝑝 + 𝑞 = 𝑛.
Theorem 3.2: [3] Let (𝐹 𝑝𝒞) be a bounded filtration, and (𝐸𝑟, 𝑑𝑟)𝑟⩾1 be the associated
spectral sequence. Then

1. for any 𝑝, 𝑞, 𝐸∞
𝑝,𝑞 = 𝐸𝑟

𝑝,𝑞 for large 𝑟, depending on 𝑝, 𝑞,
2. 𝐸2

𝑝,𝑞 ⇒
𝑝

𝐻𝑛(𝒞).
Proof:

1. If 𝑝 is large, that is 𝑝 > 𝑡(𝑛), then 𝐹 𝑝−1 = 𝐹 𝑝, and 𝐹 𝑝/𝐹 𝑝−1 = 0. So that 𝐸𝑝,𝑞 =
𝐻𝑝+𝑞(𝐹 𝑝/𝐹 𝑝−1) = 0. Since𝐸𝑟

𝑝,𝑞 is a subquotient of𝐸𝑝,𝑞, we have𝐸𝑟
𝑝,𝑞 = 0 for every

r. If 𝑝 < 𝑠(𝑛), we have 𝐹 𝑝 = 0, therefore 𝐸𝑟
𝑝,𝑞 = 0 for every 𝑟.

Then considering the differential 𝑑𝑟, which has degree (−𝑟, 𝑟 − 1). For any fiexed
(𝑝, 𝑞), we can choose a sufficient large 𝑟, such that 𝑝−𝑟 < 𝑠(𝑛) and 𝑝+𝑟 > 𝑡(𝑛). In this
circumstance, 𝑑𝑟

𝑝,𝑞 = 𝑑𝑟
𝑝+𝑟,𝑞−𝑟+1 = 0, thus 𝐸𝑟+1

𝑝,𝑞 = 𝐸𝑟
𝑝,𝑞, which yields 𝐸𝑟

𝑝,𝑞 = 𝐸∞
𝑝,𝑞.

2. Writing • for all second indices and observe the first subscript.Look into the exact
sequence coming from the 𝑟th couple:

𝐷𝑟
𝑝+𝑟−2,•

𝛼𝑟
// 𝐷𝑟

𝑝+𝑟−1,•
𝛽𝑟

// 𝐸𝑟
𝑝,𝑞

𝛾𝑟
// 𝐷𝑟

𝑝−1,𝑞. (3-1)

The module

𝐷𝑟
𝑝,𝑞 = im (𝑖𝑝−1𝑖𝑝−2 ⋯ 𝑖𝑝−𝑟+1)∗ ∶ 𝐻𝑛(𝐹 𝑝−𝑟+1) → 𝐻𝑛(𝐹 𝑝).

Replacing 𝑝 first by 𝑝 + 𝑟 − 1 then by 𝑝 + 𝑟 − 2, we have

𝐷𝑟
𝑝+𝑟−1,• = im (𝑖𝑝+𝑟−2 ⋯ 𝑖𝑝)∗ ⊂ 𝐻𝑛(𝐹 𝑝+𝑟−1)

𝐷𝑟
𝑝+𝑟−2,• = im (𝑖𝑝+𝑟−3 ⋯ 𝑖𝑝−1)∗ ⊂ 𝐻𝑛(𝐹 𝑝+𝑟−2).

For large 𝑟, 𝐹 𝑝+𝑟−1 = 𝐹 𝑡 = 𝒞, and the composition of the inclusions is just the
inclusion 𝑖𝑝 ∶ 𝐹 𝑝 → 𝒞. Therefore, 𝐷𝑟

𝑝+𝑟−1,• = im 𝑖𝑝
∗ = 𝛷𝑝𝐻𝑛 and 𝐷𝑟

𝑝+𝑟−2,• =
im 𝑖𝑝−1

∗ = 𝛷𝑝−1𝐻𝑛. Hence we can rewrite (3-1) in the following:

𝛷𝑝−1𝐻𝑛 → 𝛷𝑝𝐻𝑛 → 𝐸𝑟
𝑝,𝑞 → 𝐷𝑟

𝑝−1,𝑞,

14
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where the first map is inclusion. If 𝐷𝑟
𝑝−1,𝑞 = 0, then for sufficient large 𝑟,

𝛷𝑝𝐻𝑛 / 𝛷𝑝−1𝐻𝑛 ≅ 𝐸𝑟
𝑝,𝑞 = 𝐸∞

𝑝,𝑞,

and we are done. But 𝐷𝑟
𝑝−1,𝑞 = im (𝐻𝑛(𝐹 𝑝−𝑟) → 𝐻𝑛(𝐹 𝑝−1)), which is zero for

𝐻𝑛(𝐹 𝑝−𝑟) = 0 when 𝑟 sufficient large.
∎

3.4 Homology of the Total Complex

Now let us turn to the calculation of total complexes arising from bicomplexes. For
a bicomplex (𝑀, 𝑑′, 𝑑′′), Tot(𝑀) can be filtered in two different ways. The first filtration
of Tot(𝑀) is (I𝐹 𝑝), where

(i𝐹 𝑝)𝑛 = ⨁
𝑖⩽𝑝

𝑀𝑖,𝑛−𝑖

= ⋯ ⊕ 𝑀𝑝−2,𝑞+2 ⊕ 𝑀𝑝−1,𝑞+1 ⊕ 𝑀𝑝,𝑞.

The 𝑛th term of it is clearly the direct sum of all 𝑀𝑖,𝑛−𝑖 on the left of a vertical line.

a) First filtration b) Second filtration

Figure 3-2 [1]

The second filtration of Tot(𝑀) is (II𝐹 𝑝), where

(II𝐹 𝑝)𝑛 = ⨁
𝑗⩽𝑝

𝑀𝑛−𝑗,𝑗

= ⋯ ⊕ 𝑀𝑞+2,𝑝−2 ⊕ 𝑀𝑞+1,𝑝−1 ⊕ 𝑀𝑞,𝑝,

The 𝑛th term of it is clearly the direct sum of all 𝑀𝑖,𝑛−𝑖 below a horizontal line.

15
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From now on, suppose the bicomplex is first quadrant. Let (I𝐸𝑟) and (II𝐸𝑟) be the
spectral sequences associated with the two filtrations of Tot(𝑀). By previous theorem
3.2, we have the following:
Corollary 3.1: The two filtrations are bounded and

1. For any 𝑝, 𝑞, (I𝐸∞
𝑝,𝑞) = (I𝐸𝑟

𝑝,𝑞) and (II𝐸∞
𝑝,𝑞) = (II𝐸𝑟

𝑝,𝑞) for large 𝑟 depending on 𝑝, 𝑞.
2. (I𝐸2

𝑝,𝑞) ⇒
𝑝

𝐻𝑛(Tot(𝑀)) and (II𝐸2
𝑝,𝑞) ⇒

𝑝
𝐻𝑛(Tot(𝑀)).

What makes spectral sequences so useful is that the 𝐸2 page of a spectral sequence
arising from a bicomplex is computable. We will compute (I𝐸2

𝑝,𝑞) below, hence throwing
away the prescript I in the following argument.

𝐸𝑝,𝑞 = 𝐻𝑛(𝐹 𝑝/𝐹 𝑝−1), notice that the 𝑛th term of 𝐹 𝑝/𝐹 𝑝−1 is just 𝑀𝑝,𝑞 by definition.
The differential (𝐹 𝑝/𝐹 𝑝−1)𝑛 → (𝐹 𝑝/𝐹 𝑝−1)𝑛−1 is

𝐷𝑛 ∶ 𝑎𝑛 + (𝐹 𝑝−1)𝑛 ↦ 𝐷𝑛𝑎𝑛 + (𝐹 𝑝−1)𝑛−1,

where 𝑎𝑛 ∈ (𝐹 𝑝)𝑛; we may assume 𝑎𝑛 ∈ 𝑀𝑝,𝑞. Now 𝐷𝑛𝑎𝑛 = (𝑑′
𝑝,𝑞 + 𝑑′′

𝑝,𝑞)𝑎𝑛 ∈ 𝑀𝑝−1,𝑞 ⊕
𝑀𝑝,𝑞−1. But 𝑀𝑝−1,𝑞 ⊂ (𝐹 𝑝−1)𝑛, so that 𝐷𝑛𝑎𝑛 ≡ 𝑑′′

𝑝,𝑞𝑎𝑛 mod (𝐹 𝑝−1)𝑛−1. Thus only 𝑑′′

survives in 𝐹 𝑝/𝐹 𝑝−1. To be precise,

𝐻𝑛(𝐹 𝑝/𝐹 𝑝−1) = ker𝐷𝑛

im 𝐷𝑛+1
≅

ker 𝑑′′
𝑝,𝑞

im 𝑑′′
𝑝,𝑞+1

= 𝐻𝑞(𝑀𝑝,∗),

where (𝑀𝑝,∗ is the 𝑝th column of 𝑀 which is a complex with differentials 𝑑′′. And there
are horizontal maps 𝑑′ survive. Hence consider the 𝑞th row,

… , 𝐻𝑞(𝑀𝑝−1,∗), 𝐻𝑞(𝑀𝑝,∗), 𝐻𝑞(𝑀𝑝+1,∗), … ,
which is complex whose differentials are induced by 𝑑′. So far, we already define another
bigraded module with 𝑝, 𝑞 term denoted by 𝐻′

𝑝𝐻′′
𝑞 (𝑀) being first taking homology 𝑞th in

𝑝th column, then taking 𝑝th homology in 𝑞th row. Briefly speaking, first taking homology
vertically, then horizontally.
Definition 3.16: For bicomplex (𝑀, 𝑑′, 𝑑′′), the bigraded module whose (𝑝, 𝑞) term
being 𝐻′

𝑝𝐻′′
𝑞 (𝑀) is called the first iterated homology.

Next theorem leads to a miracle.
Theorem 3.3: If 𝑀 is a first quadrant bicomplex, then

(I𝐸1
𝑝,𝑞) = 𝐻𝑞(𝑀𝑝,∗)

(I𝐸2
𝑝,𝑞) = 𝐻′

𝑝𝐻′′
𝑞 (𝑀) ⇒

𝑝
𝐻𝑛(Tot(𝑀)).

Hence we can compute the 𝐸2 page through the first iterated homology.
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Proof: Only thing to verify is the second statement. Omit the prescript I for convenience.
We show that 𝑑1

𝑝,𝑞 ∶ 𝐸1
𝑝,𝑞 → 𝐸1

𝑝−1,𝑞 takes cls𝑧 ↦ cls(𝑑′𝑧) ∈ 𝐻′
𝑝𝐻′′

𝑞 (𝑀) is the same as
differentials defined in the first iterated homology. Then the consequence follows. As
𝑑1 ∶ 𝐻𝑝+𝑞(𝐹 𝑝/𝐹 𝑝−1) → 𝐻𝑝+𝑞−1(𝐹 𝑝−1/𝐹 𝑝−2) is the connecting homomorphism, we have
a diagram in chain complexes:

𝑀𝑝−1,𝑞+1 ⊕ 𝑀𝑝,𝑞

𝐷
��

𝑗 // 𝑀𝑝,𝑞 // 0

0 // 𝑀𝑝−1,𝑞
𝑖// 𝑀𝑝−1,𝑞 ⊕ 𝑀𝑝,𝑞−1.

where 𝐷 ∶ (𝑎𝑝−1,𝑞, 𝑎𝑝,𝑞) ↦ (𝑑′′𝑎𝑝−1,𝑞 + 𝑑′𝑎𝑝,𝑞 , 𝑑′′𝑎𝑝,𝑞). Let 𝑧 ∈ 𝑀𝑝,𝑞 be a cycle; that is,
𝑑′′

𝑝,𝑞𝑧 = 0. Choose 𝑗−1𝑧 = (0, 𝑧), so that 𝐷(0, 𝑧) = (𝑑′
𝑝,𝑞𝑧, 0) for 𝑑′′ = 0.

𝑑1cls(𝑧) = cls(𝑖−1𝐷𝑗−1𝑧) = cls(𝑑′𝑧) ∈ 𝐻′
𝑝𝐻′′

𝑞 (𝑀).

∎
There is a dual version for the second filtration.

Definition 3.17: For a bicomplex (𝑀, 𝑑′, 𝑑′′), the bigraded module whose (𝑝, 𝑞) term is
𝐻′′

𝑝 𝐻′
𝑞(𝑀) is called its second iterated homology. That is taking homology horizontally

at 𝑝th row first, then vertically at 𝑞th column. Notice that the indices in this circumstance
are interchanged.
Theorem 3.4: If 𝑀 is a first quadrant bicomplex, then

(II𝐸1
𝑝,𝑞) = 𝐻𝑞(𝑀∗,𝑝)

(II𝐸2
𝑝,𝑞) = 𝐻′′

𝑝 𝐻′
𝑞(𝑀) ⇒

𝑝
𝐻𝑛(Tot(𝑀)).

Even both two spectral sequences converge to 𝐻𝑛(Tot(𝑀)), there may not be iso-
morphisms I𝐸∞

𝑝,𝑞 ≅ II𝐸∞
𝑝,𝑞 and the induced filtrations on 𝐻𝑛 from (i𝐹 𝑝) and from (ii𝐹 𝑝)

need not be the same. The following situation usually happens, that is, there are lots of 0
on the 𝐸2 page.
Definition 3.18: A spectral sequence collapses on the 𝑝-axis if 𝐸2

𝑝,𝑞 = 0 for all 𝑞 ≠ 0;
collapses on 𝑞-axis if 𝐸2

𝑝,𝑞 = 0 for each 𝑝 ≠ 0.
By arguing on the factor modules, one finds if a first quadrant spectral sequence

converges, then
1. If it collapse on either axis, then 𝐸∞

𝑝,𝑞 = 𝐸2
𝑝,𝑞 for all 𝑝, 𝑞.

2. If it collapse on the 𝑝-axis, then 𝐻𝑛(Tot(𝑀)) ≅ 𝐸2
𝑛,0.

3. If it collapse on the 𝑞-axis, then 𝐻𝑛(Tot(𝑀)) ≅ 𝐸2
0,𝑛.
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In homological algebra, there are two important functors Tor𝑅𝑛 and Ext𝑅𝑛 , the left
derived functor of tensor and the right derived functor of Hom. These functors are actually
bifunctors and independent of the variable resolved. We can use spectral sequence to show
this property.
Example 3.4: Recall the notation:

Tor𝑅𝑛 (𝐴, 𝐵) = 𝐻𝑛(P𝐴 ⊗𝑅 𝐵) and tor𝑅𝑛 (𝐴, 𝐵) = 𝐻𝑛(𝐴 ⊗𝑅 Q𝐵),
where P𝐴 and Q𝐵 are deleted projective resolutions of 𝐴 and 𝐵 respectively. Then

Tor𝑅𝑛 (𝐴, 𝐵) = 𝐻𝑛(P𝐴 ⊗𝑅 𝐵) ≅ 𝐻𝑛(P𝐴 ⊗ Q𝐵) ≅ 𝐻𝑛(𝐴 ⊗𝑅 Q𝐵) = tor𝑅𝑛 (𝐴, 𝐵)

Suppose we have bicomlex (𝑀, 𝑑′, 𝑑′′) in section 3.1 whose total complex is P𝐴 ⊗ Q𝐵

and compute it with the first iterated homology. 𝐸1 is 𝐻′′
𝑞 (𝑀𝑝,∗), the 𝑞th homology of

the 𝑝th column

𝑀𝑝,∗ =→ 𝑃𝑝 ⊗ 𝑄𝑞+1 → 𝑃𝑝 ⊗ 𝑄𝑞 →→ 𝑃𝑝 ⊗ 𝑄𝑞−1 → .

This sequence is exact for 𝑞 > 0 because that 𝑃𝑝 is projective, thus 𝐻𝑞(𝑀𝑝,∗) = 0 for
𝑞 > 0. When 𝑞 = 0, 𝑄1 → 𝑄0 → 𝐵 → 0 is exact respect to the functor 𝑃𝑝 ⊗•. Therefore,
𝐻𝑞(𝑀𝑝,∗) = 𝑃𝑝 ⊗ 𝐵. To sum up,

I𝐸1
𝑝,𝑞 =

⎧⎪
⎨
⎪⎩

0, if 𝑞 > 0,

𝑃𝑝 ⊗ 𝐵, if 𝑞 = 0.
Therefore, the spectral sequence collopses on the 𝑝-axis.

I𝐸2
𝑝,𝑞 = 𝐻′

𝑝𝐻′′
𝑞 (𝑀) =

⎧⎪
⎨
⎪⎩

0, if 𝑞 > 0,

𝐻𝑝(P𝐴 ⊗ 𝐵), if 𝑞 = 0.
Thus the previous observation yields

𝐻𝑛(P𝐴 ⊗ Q𝐵) = 𝐻𝑛(Tot(𝑀)) ≅ I𝐸2
𝑛,0 ≅ 𝐻𝑛(P𝐴 ⊗ 𝐵).

A similar argument using the second iterated homology gives

II𝐸2
𝑝,𝑞 = 𝐻′′

𝑝 𝐻′
𝑞(𝑀) =

⎧⎪
⎨
⎪⎩

0 if 𝑝 > 0

𝐻𝑞(𝐴 ⊗ Q𝐵) if 𝑝 = 0.
Thus this spectral sequence collapse on 𝑝-axis,

𝐻𝑛(P𝐴 ⊗ Q𝐵) = 𝐻𝑛(Tot(𝑀)) ≅ II𝐸2
0,𝑛 ≅ 𝐻𝑛(𝐴 ⊗ Q𝐵),

which proves our statement.
The Ext version will focus on a third quadrant bicomplex, and the argument is the
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same as it in the first quadrant.

3.5 The Serre Spectral Sequence

Suppose 𝜋 ∶ 𝑋 → 𝐵 is a filtration. The base space 𝐵 is path connected, and has
a cell structure. We can construct a filtration of 𝑋 by the subspaces 𝑋𝑝 = 𝜋−1(𝐵𝑝), 𝐵𝑝

being the 𝑝−skeleton of 𝐵. Since (𝐵, 𝐵𝑝) is 𝑝−connected, (𝑋, 𝑋𝑝) is 𝑝−connected as well
for the homotopy lifting property, the inclusion 𝑋𝑝 ↪ 𝑋 induces an isomorphism on 𝐻𝑛

with any coefficient 𝐺. Together with 𝑋𝑝 = when 𝑝 < 0, we obtain a bounded filtration
of chain complex on 𝑋.

The 𝐸1 term consists of 𝐸1
𝑝,𝑞 = 𝐻𝑝+𝑞(𝑋𝑝, 𝑋𝑝−1; 𝐺), which is nonzero only when

𝑝, 𝑞 ⩾ 0. Hence the spectral sequence is a first quadrant one. Together with the argument
above, this spectral sequence converges to 𝐻∗(𝑋; 𝐺).
Theorem 3.5 (Serre Spectral Sequence [4]): Suppose we have a fibration 𝐹 → 𝑋 →
𝐵 with 𝐵 path-connected. Then the corresponding spectral sequence converges, with

𝐻𝑝(𝐵; 𝐻𝑞(𝐹 ; 𝐺)) ≅ 𝐸2
𝑝,𝑞 ⇒

𝑝
𝐻𝑛(𝑋; 𝐺),

if 𝜋1(𝐵) acts trivially on 𝐻∗(𝐹 ; 𝐺).
The proof of this theorem is a quite long story, readers can find it in [5].

Example 3.5: From the preceding theorem, we can compute the homology of 𝐾(ℤ, 2).
Firstly, we consider 𝛺𝐵 → 𝑃 → 𝐵 as a pathspace filtration of 𝐵 being a 𝐾(ℤ, 2).
𝛺𝐾(ℤ, 𝟚) is a 𝐾(ℤ, 𝟙) wich can be identified with 𝑆1. 𝑃 is the pathspace of 𝐵 which
is contractible. Then the spectral sequence is in the following form.

𝐸2 page for 𝐻∗(𝐾(ℤ, 2))

0 1 2 3 4 5 6

0

1

ℤ

ℤ

𝐻1(𝐵)

𝐻1(𝐵)

𝐻2(𝐵)

𝐻2(𝐵)

𝐻3(𝐵)

𝐻3(𝐵)

𝐻4(𝐵)

𝐻4(𝐵)

𝐻5(𝐵)

𝐻5(𝐵)

𝐻6(𝐵)

𝐻6(𝐵)

𝐸𝑝,𝑞
2 = 𝐻𝑝(𝐾(ℤ, 2); 𝐻𝑞(𝑆1)), and the differentials 𝑑2 are indicated in the figure.

Since 𝑃 is contractible, 𝐻𝑛(𝑃 ) = 0 for all 𝑛 ≠ 0, and 𝑑𝑖 are all zero maps for 𝑖 ⩾ 3,
we know that 𝐸3

𝑝,𝑞 = 𝐸∞
𝑝,𝑞 = 0 for 𝑝, 𝑞 > 0. Therefore, all the differentials 𝑑2 must be

isomorphisms, which yields 𝐻2𝑛 = ℤ and 𝐻2𝑛+1 = 0.
There is a analogous Serre spectral sequence in cohomology, which is more powerful

contributing to the extra structure on it.
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Theorem 3.6: [6] Let 𝐹 → 𝑋 → 𝐵 be a filtration. Let 𝐵 be a path-connected CW
complex, then there is a spectral sequence converges to 𝐻𝑛(𝑋; 𝐺) with

𝐸𝑝,𝑞
2 ≅ 𝐻𝑝(𝐵; 𝐻𝑞(𝐹 ; 𝐺)).

if 𝜋1(𝐵) acting trivially on cohomology 𝐻∗(𝐹 ; 𝐺).
The cohomological version of Serre spectral sequences have cup products structure.

That is a bilinear map:

𝐸𝑝,𝑞
𝑟 × 𝐸𝑠,𝑡

𝑟 → 𝐸𝑝+𝑠,𝑞+𝑡
𝑟 (3-2)

satisfying:
1. 𝑑𝑟 satisfies 𝑑(𝑥𝑦) = 𝑑(𝑥)𝑦 + (−1)𝑝+𝑞𝑥𝑑(𝑦) for 𝑥 ∈ 𝐸𝑝,𝑞

𝑟 . This implies the product
𝐸𝑝,𝑞

𝑟 × 𝐸𝑠,𝑡
𝑟 → 𝐸𝑝+𝑠,𝑞+𝑡

𝑟 induces a product 𝐸𝑝,𝑞
𝑟+1 × 𝐸𝑠,𝑡

𝑟+1 → 𝐸𝑝+𝑠,𝑞+𝑡
𝑟+1 , and this is

exactlythe product for 𝐸𝑟+1.
2. The product in 𝐸2 page is (−1)𝑞𝑠 times the standard cup product

𝐻𝑝(𝐵; 𝐻𝑞(𝐹 ; 𝑅)) × 𝐻𝑠(𝐵; 𝐻 𝑡(𝐹 ; 𝑅)) → 𝐻𝑝+𝑠(𝐵; 𝐻𝑞+𝑡(𝐹 ; 𝑅))

sending (𝜙, 𝜓) to 𝜙 ⌣ 𝜓 , the coefficients are combined through the cup product in
𝐻∗(𝐹 ; 𝑅).

3. The cup product in 𝐻∗(𝑋; 𝑅) restricts to maps 𝐹 𝑚
𝑝 × 𝐹 𝑛

𝑠 → 𝐹 𝑚+𝑛
𝑝+𝑠 . These induce

quotient maps 𝐹 𝑚
𝑝 /𝐹 𝑚

𝑝+1 × 𝐹 𝑛
𝑠 /𝐹 𝑛

𝑠+1 → 𝐹 𝑚+𝑛
𝑝+𝑠 /𝐹 𝑚+𝑛

𝑝+𝑠+1 that coincide with the products
𝐸𝑝.𝑚−𝑝

∞ × 𝐸𝑠,𝑛−𝑠
∞ → 𝐸𝑝+𝑠,𝑚+𝑛−𝑝−𝑠

∞ .
The tedious proof of statements above will not be covered. But with these properties

in mind, we can start to compute something interesting.
Example 3.6: We can calculate the cohomology of 𝐾(ℤ, 2) through the product struc-
ture. Again, starting with the pathspace filtration 𝐾(ℤ, 1) → 𝑃 → 𝐾(ℤ, 2).

𝐸2 page for 𝐻∗(𝐾(ℤ, 2))

0 1 2 3 4 5 6

0

1

ℤ1

ℤ𝑎

ℤ𝑥2 ℤ𝑥4 ℤ𝑥6

ℤ𝑎𝑥2 ℤ𝑎𝑥4 ℤ𝑎𝑥6

0

0

0

0

0

0

𝐸𝑝,𝑞
2 = 𝐻𝑝(𝐾(ℤ, 2); 𝐻𝑞(𝑆1)). 𝑎 and 𝑥𝑖 are generators of 𝐸0,𝑖

2 = ℤ and 𝐸𝑖,0
2 =

ℤ. The differentials in this chart must be isomorphisms since 𝑃 is contractible, and all
terms except ℤ1 disappear in 𝐸∞. Hence we may regard 𝑥2 = 𝑑2𝑎. 𝑥2𝑖+2 = 𝑑2(𝑎𝑥2𝑖) =
(𝑑2𝑎)𝑥2𝑖 ± 𝑎(𝑑2𝑥2𝑖) = (𝑑2𝑎)𝑥2𝑖 = 𝑥2𝑥2𝑖. This implies that 𝐻∗(𝐾(ℤ, 2); ℤ) = ℤ[𝑥2] is a
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polynomial ring.

3.6 Computing 𝜋4(𝑆3)
In this short section, we can calculate the 𝑝-torsion of 𝜋𝑖(𝑆3). It is 0 when 𝑖 < 2𝑝

and ℤ𝑝 when 𝑖 = 2𝑝.
As in previous section, we can find a map 𝑆3 → 𝐾(ℤ, 3) which is isomorphic on

𝜋3. And then, we can obtain a filtration 𝐹 → 𝑆3 → 𝐾(ℤ, 3). 𝐹 is 3-connected and
𝜋𝑖(𝐹 ) ≅ 𝜋𝑖(𝑆3) according to the long exact sequence of this fibration. Stretch 𝐹 → 𝑆3

to another fibration 𝐾(ℤ, 2) → 𝑋 → 𝑆3 where 𝑋 ≃ 𝐹 . The spectral sequence for this
fibration have 𝐸2 = 𝐸3 pages shown in the figure.

𝐸2 page for 𝐻∗(𝑋)

0 1 2 3

0

1

2

3

4

5

6

ℤ1

ℤ𝑎

ℤ𝑎2

ℤ𝑎3

ℤ𝑥

ℤ𝑎𝑥

ℤ𝑎2𝑥

ℤ𝑎3𝑥

𝐸3 page for 𝐻∗(𝑋)

0 1 2 3

0

1

2

3

4

5

6

ℤ1

ℤ𝑎

ℤ𝑎2

ℤ𝑎3

ℤ𝑥

ℤ𝑎𝑥

ℤ𝑎2𝑥

ℤ𝑎3𝑥

We want to determin 𝐻∗(𝑋; ℤ). Since 𝑋 is 3-connected, 𝐻2(𝑋) = 𝐻3(𝑋) = 0 by
Hurewicz theorem, thus by universal coefficient theorem,𝐻3(𝑋) = 0. That is𝐸0,3

∞ = 𝐸0,3
4

must be zero, therefore the differential ℤ𝑎 → ℤ𝑥 is isomorphic. Hence 𝑑3𝑎 = 𝑥, which
implies that 𝑑3(𝑎𝑛) = 𝑛𝑎𝑛−1𝑥. From this we deduce that 𝐻 𝑖(𝑋) = ℤ𝑛 when 𝑖 = 2𝑛 + 1
and 0 when 𝑖 = 2𝑛 > 0. The corresponding homology is that 𝐻𝑖(𝑋) = ℤ𝑛 when 𝑖 = 2𝑛
and 0 when 𝑖 = 2𝑛 − 1.

Let 𝔖, the Serre classes, be one of three following classes:
1. ℱ𝒢, finitely generated abelian groups.
2. 𝒯𝑝, torsion abelian groups. And the order of each element is only divisible by num-

bers from a set 𝑃 of primes.
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3. ℱ𝑝, finite groups in 𝒯𝑝.
Theorem 3.7: If 𝑋 is a path-connected and 𝜋1(𝑋) acts trivially on 𝜋𝑛(𝑋), then 𝜋𝑛(𝑋) ∈
𝔖 for all 𝑛 iff 𝐻𝑛(𝑋; ℤ) ∈ 𝔖 for all 𝑛 > 0.

Especially, homotopy groups of a simply connected space are all finitely generated
if and only if all its homology groups are finitely generated. Hence 𝜋𝑖(𝑆𝑛) is finitely
generated. The preceding theorem can be deduced by amore generally Hurewicz theorem:
Theorem 3.8: If 𝑋 is path connected and 𝜋1 acts trivially on 𝜋𝑖 for all 𝑖. Suppose
𝜋𝑖(𝑋) ∈ 𝔖 for 𝑖 < 𝑛, the Hurewicz homomorphism ℎ ∶ 𝜋𝑛(𝑋) → 𝐻𝑛(𝑋) is isomorphic
up to mod 𝔖.

According to these two theorem, we obtain that the first 𝑝-torsion in 𝜋∗(𝑋) ≅ 𝜋∗(𝑆3)
is ℤ𝑝 in 𝜋2𝑝. Let 𝑝 = 2 we have 𝜋4(𝑆3) = ℤ2.

In the last part of this section, the conclusion that 𝜋𝑠
𝑖 is finite for 𝑖 > 0.

Theorem 3.9: 𝜋𝑖(𝑆𝑛) is finite when 𝑖 > 𝑛, except for 𝜋4𝑘−1(𝑆2𝑘). It is indeed a finite
group taking the direct sum with ℤ.
Proof: Since we already known that 𝜋𝑖(𝑆1) = 0 when 𝑖 > 1, we can assume that 𝑛 > 1.
Then the condition for Serre spectral sequence qualified.

As usual, there is amap𝑆𝑛 → 𝐾(ℤ, 𝑛)which induces an isomorphism between them.
Get a fibration with fiber 𝐹 . Then 𝐹 is n-connected according to the long exact sequence,
and 𝜋𝑖(𝐹 ) ≅ 𝜋𝑖(𝑆𝑛) for 𝑖 > 𝑛. Stretch another fibration 𝐾(ℤ, 𝑛−1) → 𝑋 → 𝑆𝑛, with 𝑋 ≃
𝐹 from the map 𝐹 → 𝑆𝑛. Then we can apply the cohomological Serre spectral sequence
with ℚ coefficients. When 𝑛 is odd, 𝐸𝑛 page is the following picture. For the same reason

Figure 3-3 [7]

as previous examples, the differentials ℚ𝑎 → ℚ𝑥 must be isomorphism. Otherwise, it
contradicts to 𝑋 is (𝑛 − 1)−connected. Hence all differentials are isomorphisms, which
leads to 𝐻∗(𝑋; ℚ) = 0 = 𝐻∗(𝑋; ℚ), therefore 𝜋𝑖(𝑋) = 𝜋𝑖(𝑆𝑛) is finite for all 𝑖 > 𝑛
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according to theorem 3.8.
When 𝑛 is even, there are only the first two rows being nonzero in the picture. Since

the cohomology of 𝑋 is the same as 𝑆2𝑛−1 in ℚ coefficients. Hence by the preceding
theorem, 𝜋𝑖(𝑆𝑛) is finite when 𝑛 < 𝑖 < 2𝑛−1 and aℤ direct sumwith a finite group through
factoring out finite groups. When 𝑖 > 2𝑛 − 1, let 𝑌 be obtained from 𝑋 by attaching cells
of dimension greater than 2𝑛 − 1 such that 𝜋𝑖(𝑌 ) = 0 for 𝑖 ⩾ 2𝑛 − 1. Consider 𝑋 ↪ 𝑌
as a fibration, whose fiber is 𝑍. Then 𝑍 is (2𝑛 − 2)−connected according to the long
exact sequence and 𝜋𝑖(𝑍) ≅ 𝜋𝑖(𝑋) for 𝑖 ⩾ 2𝑛 − 1, and 𝜋𝑖(𝑌 ) ≅ 𝜋𝑖(𝑋) for 𝑖 < 2𝑛 − 1 since
adding cells greater than 2𝑛−1 does not affect 𝜋𝑖 with 𝑖 < 2𝑛−1. Therefore 𝜋𝑖(𝑌 ) is finite
for all 𝑖 which leads to 𝐻̃∗(𝑌 ; ℚ) is finite and hence zero. Applying spectral sequence on
𝑍 → 𝑋 → 𝑌 yields 𝐻∗(𝑍; ℚ) ≅ 𝐻∗(𝑋; ℚ) ≅ 𝐻∗(𝑆2𝑛−1; ℚ). Then choose a map from
𝑍 to 𝐾(ℤ, 2𝑛 − 1) inducing isomorphism on 𝜋2𝑛−1. Using the argument above, we have
𝜋𝑖(𝑍) is finite for all 𝑖. Eventually, when 𝑖 > 2𝑛 − 1, 𝜋𝑖(𝑍) ≅ 𝜋𝑖(𝑋) suggests 𝜋𝑖(𝑆𝑛) is
finite for 𝑖 > 2𝑛 − 1. ∎
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CHAPTER 4 COHOMOLOGY OPERATIONS

The main purpose of this chapter is to introduce the Steenrod operations and Adams
spectral sequences as we mentioned in chapter 2. Steenrod operations as a kind of coho-
mology operations, is not just servicing for Adams spectral sequence. I give an example
that determine the upper bound of tangent vector fields on sphere.

4.1 General Cohomology Operations

Definition 4.1: A cohomology operation is a transformation 𝛩 = 𝛩𝑋 ∶ 𝐻𝑚(𝑋; 𝐺) →
𝐻𝑛(𝑋; 𝐻), with fixed 𝑚, 𝑛, 𝐺 and 𝐻 , and fit into the diagram.

𝐻𝑚(𝑌 ; 𝐺)
𝑓 ∗
��

𝛩𝑌 // 𝐻𝑛(𝑌 ; 𝐻)
𝑓 ∗
��

𝐻𝑚(𝑋; 𝐺) 𝛩𝑋 // 𝐻𝑛(𝑋; 𝐻)
If we view 𝐻𝑚(•; 𝐺) and 𝐻𝑛(•; 𝐻) as functors from the category of topological

spaces to the category of groups or more generally modules, then we may regard a coho-
mology operation as a natural transformation between these two functors.
Example 4.1:

1. With coefficients in a ring𝑅, the transformation𝐻𝑚(𝑋; 𝑅) → 𝐻𝑚𝑝(𝑋; 𝑅), 𝛼 ↦ 𝛼𝑝,
is a cohomology operation since 𝑓 ∗(𝛼𝑝) = (𝑓 ∗(𝛼))𝑝.

2. Taking 𝑅 = ℤ, the previous example says that a cohomology operation need not to
be a homomorphism. It can be just between sets.

Proposition 4.1: For fixed 𝑚, 𝑛, 𝐺 and 𝐻 there is a bijection between 𝛩 ∶ 𝐻𝑚(𝑋; 𝐺) →
𝐻𝑛(𝑋; 𝐻), all cohomology operations and 𝐻𝑛(𝐾(𝐺, 𝑚); 𝐻), explicitly 𝛩 ↦ 𝛩(𝜄) where
𝜄 ∈ 𝐻𝑚(𝐾(𝐺, 𝑚); 𝐺) is a fundamental class.
Proof: Let𝑋, 𝑌 be CW complex, so we can identity𝐻𝑚(𝑋; 𝐺)with ⟨𝑋, 𝐾(𝐺, 𝑚)⟩. If an
elment 𝛼 ∈ 𝐻𝑚(𝑋; 𝐺) corresponds to a map 𝜙 ∶ 𝑋 → 𝐾(𝐺, 𝑚), so that 𝜙∗(𝜄) = 𝛼, then
𝜃(𝛼) = 𝛩(𝜙∗(𝜄)) = 𝜙∗(𝛩(𝜄)), hence 𝛩 is uniquely determined by 𝛩(𝜄) since 𝜙∗ is uniquely
determined by the class or element in 𝐻𝑚(𝐺; 𝐺). This provides injectivity. In the case of
surjectivity, suppose 𝛼 ∈ 𝐻𝑛(𝐾(𝐺, 𝑚); 𝐻) representing a map 𝜃 ∶ 𝐾(𝐺, 𝑚) → 𝐾(𝐻, 𝑛),
then 𝜃 induces ⟨𝑋, 𝐾(𝐺, 𝑚)⟩ → ⟨𝑋, 𝐾(𝐻, 𝑛)⟩, that is, 𝛩 ∶ 𝐻𝑚(𝑋; 𝐺) → 𝐻𝑛(𝑋; 𝐻) and
𝐻𝑛(𝐾(𝐺, 𝑚); 𝐻), with 𝛩(𝜄) = 𝛼 ∎
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Cohomology operations must satisfy𝑚 ⩾ 𝑛. Since𝐾(𝐺, 𝑚) being (𝑚−1)−connected
and applying universal coefficient theorem, yields 𝐻𝑚(𝐾(𝐺, 𝑛); 𝐻) = 0 when 𝑚 < 𝑛.
Moreover, since 𝐻𝑚(𝐾(𝐺, 𝑚); 𝐻) ≅ Hom(𝐺, 𝐻), cohomology operations fixing dimen-
sion are coefficient homomorphism. This proposition is analogue, in some sense, to the
Yoneda Lemma in category theory.

4.2 Steenrod Operations

The interesting cohomology operations are Steenrod squares and Steenrod powers
since they actually are homomorphisms:

𝑆𝑞𝑖 ∶ 𝐻𝑛(𝑋′ℤ2) → 𝐻𝑛+𝑖(𝑋, ℤ2)

𝑃 𝑖 ∶ 𝐻𝑛(𝑋; ℤ𝑝) → 𝐻𝑛+2𝑖(𝑝−1)(𝑋; ℤ𝑝) for odd primes p

The Steenrod squares [8] 𝑆𝑞𝑖 ∶ 𝐻𝑛(𝑋; ℤ2) → 𝐻𝑛+𝑖(𝑋; ℤ2), 𝑖 ⩾ 0, satisfy the fol-
lowing properties.

1. 𝑆𝑞𝑖(𝑓 ∗(𝛼)) = 𝑓 ∗(𝑆𝑞𝑖(𝛼)) for 𝑓 ∶ 𝑋 → 𝑌 , the naturality.
2. 𝑆𝑞𝑖(𝛼 + 𝛽) = 𝑆𝑞𝑖(𝛼) + 𝑆𝑞𝑖(𝛽), being homomorphism.
3. 𝑆𝑞𝑖(𝛼 ⌣ 𝛽) = ∑𝑗 𝑆𝑞𝑗(𝛼) ⌣ 𝑆𝑞𝑖−𝑗(𝛽) (the Cartan formula [9]).
4. 𝑆𝑞𝑖(𝜎(𝛼)) = 𝜎(𝑆𝑞𝑖(𝛼)) where 𝜎 ∶ 𝐻𝑛(𝑋; ℤ2) → 𝐻𝑛+1(𝛴𝑋; ℤ2) is the suspension

isomorphism.
5. 𝑆𝑞𝑖(𝛼) = 𝛼2 if |𝛼| = 𝑖, and 𝑆𝑞𝑖(𝛼) = 0 if 𝑖 > |𝛼|.
6. 𝑆𝑞0 = 1, the identity.
7. 𝑆𝑞1 is the ℤ2 Bockstein homomorphism 𝛽 associated with the coefficient sequence

0 → ℤ2
2→ ℤ4 → ℤ2 → 0.

Recall the Bockstein homomorphism. If one has an exact sequence 0 → 𝐴 → 𝐵 →
𝐶 → 0 on abelian groups, then one can apply the covariant functor Hom(𝐶𝑛(𝑋); −) to
yield an exact sequence 0 → 𝐶𝑛(𝑋; 𝐴) → 𝐶𝑛(𝑋; 𝐵) → 𝐶𝑛(𝑋; 𝐶) → 0. Thus we have:

⋯ → 𝐻𝑛(𝑋; 𝐴) → 𝐻𝑛(𝑋; 𝐵) → 𝐻𝑛(𝑋; 𝐶) → 𝐻𝑛+1(𝑋; 𝐴) → ⋯

whose boundary map 𝛽 ∶ 𝐻𝑛(𝑋; 𝐶) → 𝐻𝑛+1(𝑋; 𝐴) is the Bockstein homomorphism.
Passing to Steenrod powers [10] 𝑃 𝑖 ∶ 𝐻𝑛(𝑋; ℤ𝑝) → 𝐻𝑛+2𝑖(𝑝−1)(𝑋; ℤ𝑝), the similar

properties holds:
1. 𝑃 𝑖𝑓 ∗ = 𝑓 ∗𝑃 𝑖 for 𝑓 ∶ 𝑋 → 𝑌 , the naturality.
2. 𝑃 𝑖(𝛼 + 𝛽) = 𝑃 𝑖(𝛼) + 𝑃 𝑖(𝛽), being homomorphism.
3. 𝑃 𝑖(𝛼 ⌣ 𝛽) = ∑𝑗 𝑃 𝑗(𝛼) ⌣ 𝑃 𝑖−𝑗(𝛽), the Cartan formula. [9]
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4. Stable under suspension.
5. 𝑃 𝑖(𝛼) = 𝛼𝑝 if 2𝑖 = |𝛼|, and 𝑃 𝑖(𝛼) = 0 if 2𝑖 > |𝛼|.
6. 𝑃 0 = 1.
It is clear that Steenrod squares and Steenrod powers are homomorphisms from (2).

(4) means that the 𝑆𝑞𝑖’s are stable under suspension. Steenrod firstly introduced Steenrod
squares, with composition as product, these squares form an algebra, denoted 𝒜2, called
the mod 2 Steenrod Algebra. The analogous Steenrod powers were constructed latter, and
form the mod p Steenrod Algebra, 𝒜𝑝. In the early 1950’s, Cartan and Adem explored the
structure of them. Then Serre and Cartan showed that Steenrod’s constructions established
all possible stable cohomology operations over the finite fields. The explicit constructions
of Steenrod squares and powers are not important, instead, their strong properties are what
we want.

The total Steenrod squares and powers are𝑆𝑞 = 𝑆𝑞0+𝑆𝑞1+⋯ and𝑃 = 𝑃 0+𝑃 1+⋯.
Their action on 𝛼 ∈ 𝐻∗(𝑋, ℤ𝑝) can only have finite𝑆𝑞𝑖’s or 𝑃 𝑖’s being nonzero . 𝑆𝑞(𝛼 ⌣
𝛽) = 𝑆𝑞(𝛼) ⌣ 𝑆𝑞(𝛽) and 𝑃 (𝛼 ⌣ 𝛽) = 𝑃 (𝛼)𝜎𝑃 (𝛽) according to Cartan formulas, so that
𝑆𝑞 and𝑃 are actually ring homomorphisms. Notice that𝑆𝑞(𝛼𝑛) = (𝑆𝑞(𝛼))𝑛 = (𝛼+𝛼2)𝑛 =
∑𝑖 (𝑛

𝑖)𝛼𝑛+𝑖 when |𝛼| = 1, therefore 𝑆𝑞𝑖(𝛼𝑛) = (𝑛
𝑖)𝛼𝑛+𝑖 when |𝛼| = 1.

Example 4.2 (Vector Fields on Spheres [5,11]): We can use Steenrod squares to find
a upper bound of the number of independent tangent fields on spheres.

Recall the Stiefel manifold 𝑉𝑛,𝑘 is a space whose points are orthonormal 𝑘−tuples in
ℝ𝑛. Projecting a 𝑘−tuple onto its first coordinate is actually a map 𝑝 ∶ 𝑉𝑛,𝑘 → 𝑆𝑛−1 with
fiber 𝑉𝑛−1,𝑘−1. A section corresponds to a set of 𝑘 − 1 orthonormal tangent vector fields
on 𝑆𝑛−1.

The (𝑛−1)−skeleton of 𝑉𝑛,𝑘 isℝℙ𝑛−1/ℝℙ𝑛−𝑘−1 for 2𝑘−1 ⩽ 𝑛. Now suppose we have
𝑓 ∶ 𝑆𝑛−1 → 𝑉𝑛,𝑘 is a section. Since 𝑝𝑓 = 1, 𝑓 ∗ is surjective on 𝐻𝑛−1(−; ℤ2). By cellular
approxiamation, we can assume 𝑓 is cellular, that is 𝑓 ∶ 𝑆𝑛−1 → ℝℙ𝑛−1/ℝℙ𝑛−𝑘−1 if 2𝑘 −
1 ⩽ 𝑛. Hence 𝑓∗ is an isomorphism due to the cellular cohomology of ℝℙ𝑛−1/ℝℙ𝑛−𝑘−1.
If the number 𝑘 satisfying (𝑛−𝑘

𝑘−1) = 1 mod 2, then the Steenrod square 𝑆𝑞𝑘−1:

𝐻𝑛−𝑘(ℝℙ𝑛−1/ℝℙ𝑛−𝑘−1; ℤ2) // 𝐻𝑛−1(ℝℙ𝑛−1/ℝℙ𝑛−𝑘−1; ℤ2)

𝛼𝑛−𝑘 ↦ (
𝑛 − 𝑘
𝑘 − 1)𝛼𝑛−1

should be nontrivial. But 𝑓 ∗ inducing an isomorphism, it contradicts to
𝑆𝑞𝑘−1 ∶ 𝐻𝑛−𝑘(𝑆𝑛−1; ℤ2) → 𝐻𝑛−1(𝑆𝑛−1; ℤ2)
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is zero.
Thus let 𝑛 = 2𝑟(2𝑠 + 1) and 𝑘 = 2𝑟 + 1 with 𝑠 ⩾ 1, then

(
𝑛 − 𝑘
𝑘 − 1) = (

2𝑟+1𝑠 − 1
2𝑟 ),

and in mod 2 case is nonzero. The condition that 𝑠 ⩾ 1 guarantees the condition 2𝑘−1 ⩽
𝑛.

To conclude, for 𝑛 = 2𝑟(2𝑠 + 1), the sphere 𝑆𝑛−1 cannot have 2𝑟 tangent fields if
𝑠 ⩾ 1. When 𝑠 = 0 this also holds, since 𝑆𝑛−1 can not have 𝑛 orthonormal tangent vector
fields.

When 𝑟 ⩽ 3, this result is optimal. Let 𝑛 = 2𝑟𝑚. When 𝑟 = 1, there is only 21 − 1
candidate. View 𝑆2𝑚−1 as the unit sphere in ℂ𝑚, the unique tangent filed is 𝑥 ↦ 𝑖𝑥. When
𝑟 = 2, view 𝑆4𝑚−1 as the unit sphere in ℍ𝑚, the maps 𝑥 ↦ 𝑖𝑥, 𝑗𝑥, 𝑘𝑥 yields all tangent
fields. As for 𝑟 = 3, one performs the same procedure on octonions, 𝕆. The upper bound
is not best. The optimal one is obtained by 𝐾-theory, using the Adams operations.

Steenrod squares and powers can be composed, with quite complicated rules, called
Adem relations [12]:

𝑆𝑞𝑎𝑆𝑞𝑏 = ∑
𝑗 (

𝑏 − 𝑗 − 1
𝑎 − 2𝑗 )𝑆𝑞𝑎+𝑏−𝑗𝑆𝑞𝑗 if 𝑎 < 2𝑏

𝑃 𝑎𝑃 𝑏 = ∑
𝑗

(−1)𝑎+𝑗
(

(𝑝 − 1)(𝑏 − 𝑗) − 1
𝑎 − 𝑝𝑗 )𝑃 𝑎+𝑏−𝑗𝑃 𝑗 if 𝑎 < 𝑝𝑏

𝑃 𝑎𝛽𝑃 𝑏 = ∑
𝑗

(−1)𝑎+𝑗
(

(𝑝 − 1)(𝑏 − 𝑗)
𝑎 − 𝑝𝑗 )𝛽𝑃 𝑎+𝑏−𝑗𝑃 𝑗

− ∑
𝑗

(−1)𝑎+𝑗
(

(𝑝 − 1)(𝑏 − 𝑗) − 1
𝑎 − 𝑝𝑗 − 1 )𝑃 𝑎+𝑏−𝑗𝛽𝑃 𝑗 if 𝑎 ⩽ 𝑝𝑏

where the coefficients are taking in ℤ2. By convention, the binomial (𝑚
𝑛) is zero if 𝑚 or

𝑛 is negative or if 𝑚 < 𝑛. Though complicated at the first glance, it is still helpful in
simplifying computation. For example, 𝑆𝑞1𝑆𝑞𝑏 = (𝑏 − 1)𝑆𝑞𝑏+1 so 𝑆𝑞1𝑆𝑞2𝑖 = 𝑆𝑞2𝑖+1

and 𝑆𝑞1𝑆𝑞2𝑖+1 = 0.
The mod 2 Steenrod algebra 𝒜2 is the algebra over ℤ2 generated by 𝑆𝑞1, 𝑆𝑞2, ⋯

quotient the ideal generated by the Adem relations. Similar to 𝒜2, 𝒜𝑝 for odd prime 𝑝 is
defined to be the algebra over ℤ𝑝 generated by 𝛽, 𝑃 1, 𝑃 2, ⋯ quotient the ideal generated
by Adem relations and 𝛽2 = 0. Thus 𝐻∗(𝑋, ℤ𝑝) can be extend to a module over 𝒜𝑝

rather then just ℤ𝑝. Clearly, 𝒜𝑝 is a graded algebra with element of degree 𝑘 being maps
𝐻𝑛(𝑋, ℤ𝑝) → 𝐻𝑛+𝑘(𝑋; ℤ𝑝) up to Adem relations for all 𝑛.
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Proposition 4.2: 𝒜2 is generated as an algebra by elements of degree 2𝑘 since there is a
relation 𝑆𝑞𝑖 = ∑0<𝑗<𝑖 𝑎𝑗𝑆𝑞𝑖−𝑗𝑆𝑞𝑗 . 𝒜𝑝 is generated as an algebra by elements of degree
𝑝𝑘 with relation 𝑃 𝑖 = ∑0<𝑗<𝑖 𝑎𝑗𝑃 𝑖−𝑗𝑃 𝑗 with 𝑎𝑗 ∈ ℤ𝑝.
Proof: This is a little trick. The argument for 𝑝 = 2 and odd 𝑝 is the same. Assume 𝑝 is
odd. Let 𝑖 = 𝑖0 + 𝑖1𝑝 + ⋯ + 𝑖𝑘𝑝𝑘 with 𝑖𝑘 ≠ 0. Let 𝑏 = 𝑝𝑘 and 𝑎 = 𝑖 − 𝑏 so that 𝑎 < 𝑝𝑏 and
𝑎, 𝑏 > 0 if 𝑖 is not a power of 𝑝. If we can show that ((𝑝−1)𝑏−1

𝑎 ) the 𝑗 = 0 term is nonzero,
then the conclusion follows from the Adem relation. It is indeed the case. The 𝑝−adic
expansion of (𝑝 − 1)𝑏 − 1 = 𝑝𝑘+1 − 1 − 𝑝𝑘 = (𝑝 − 1)(1 + 𝑝 + ⋯ + 𝑝𝑘−1 + (𝑝 − 2)𝑝𝑘 and
𝑎 = 𝑖0 + 𝑖1𝑝 + ⋯ + (𝑖𝑘 − 1)𝑝𝑘. It follows that

(
(𝑝 − 1)𝑏 − 1

𝑎 ) = (
𝑝 − 1

𝑖0 ) ⋯ (
𝑝 − 1
𝑖𝑘−1 )(

𝑝 − 2
𝑖𝑘 − 1),

is nonzero. ∎
An elemnt 𝑎 of a graded algebra is decomposable if it can be writen as ∑𝑖 𝑎𝑖𝑏𝑖 with

𝑎𝑖, 𝑏𝑖 having degree lower than 𝑎. This proposition implies that most of Steenrod opera-
tions are decomposable.

Using the argument above, we can show that the only spaces 𝑋 with its cohomology
ring with ℤ coefficients a polynomial ring ℤ[𝑥] must satisfy the dimension of 𝑥 is 2 or 4,
corresponding to ℂℙ∞ and ℍℙ∞.
Theorem 4.1: Suppose 𝐻∗(𝑋; ℤ𝑝) is the polynomial algebra on a generator 𝛼 with
|𝛼| = 𝑛. If 𝑝 = 2, 𝑛 = 2𝑥; if 𝑝 is odd, then 𝑛 = 𝑝𝑘𝑙 where 𝑙 divides 2(𝑝 − 1) and is even.
Proof: When 𝑝 = 2, 𝑆𝑞𝑛(𝛼) = 𝛼2 ≠ 0 according to our hypothesis. If 𝑛 is not a power
of 2, then 𝑆𝑞𝑛 decomposes into some 𝑆𝑞𝑛−𝑖𝑆𝑞𝑖 with 0 < 𝑖 < 𝑛. But such term must be
zero since 𝑆𝑞𝑖 maps anything into 𝐻𝑛+𝑖(𝑋; ℤ2 = 0 since 𝑗 < 𝑛 and 𝐻∗(𝑋; ℤ2) = ℤ[𝛼]
with |𝛼| = 𝑛.

When 𝑝 is odd, 𝛼2 ≠ 0 implies that 𝑛 is even. Suppose 𝑛 = 2𝑘, then 𝑃 𝑘(𝛼) = 𝛼𝑝 ≠ 0.
Since 𝑃 𝑘 can be written as some 𝑃 𝑝𝑖

s, some 𝑃 𝑝𝑖 ≠ 0 in𝐻∗(𝑋; ℤ𝑝). This implies 𝑛 divides
2𝑝𝑖(𝑝 − 1). The result follows. ∎

Now if 𝐻∗(𝑋) = ℤ[𝛼], passing from ℤ to ℤ2, the theorem yields that |𝛼| is a power
of 2. Passing to ℤ3, |𝛼| is a power of 3 times a divisor of 2(3 − 1) = 4. Hence |𝛼| = 2, 4.

4.3 Adams Spectral Sequences

We finally arrive here. In this section, I will establish the progress of calculation with
Adams spectral sequences and calculate 𝜋𝑠

3 as a special case of the motivated problem.
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Theorem 4.2: [13] Let 𝑋, 𝑌 be CW complexes of finite type. And 𝑌 has finitely many
cells. Then there is a spectral sequence with

𝐸𝑠,𝑡
2 = Ext𝑠𝒜𝑝

(𝐻̃∗(𝑌 , ℤ𝑝), 𝐻̃∗(𝑆𝑡𝑋, ℤ𝑝)) ⇒ {𝑆 𝑡−𝑠𝑋, 𝑌 }^
𝑝.

This implies the statement in the last of chapter 2. The construction and proof of this
theorem requires amounts of work. Using CW spectra and cofibration sequence for pair
(𝑋, 𝐴). Hence I will not present it here. Spectral sequences are machinery, it is enough
for one using them in spite of understanding the constructions of them. To use Adams
spectral sequence doing computation, one proceeds in three steps [14]

1. Calculate Ext𝑠𝒜𝑝
(𝐻̃∗(𝑌 , ℤ𝑝), 𝐻̃∗(𝑆𝑡𝑋, ℤ𝑝)). This steps falls into two parts.

Firstly, figure out the structure of 𝐻̃∗(𝑋; ℤ𝑝) and 𝐻̃∗(𝑌 ; ℤ𝑝) as modules over 𝒜𝑝.
Secondly, calculate the Ext group using homological algebra. This is quite difficult.

2. Calculate 𝐸𝑟+1 from 𝐸𝑟. This step is really hard, usually impossible for there are
infinitely many tough terms to be computed.

3. Deduce {𝑆𝑡−𝑠𝑋, 𝑌 }^
2 from 𝐸∞ page. One obtains a filtration on it at most time.

Perhaps the greatest uses of the Adams spectral sequences are proving things rather
than calculation. For instance, if a map 𝑋 → 𝑋′ induces isomorphism on 𝐸2 pages, then
inducing isomorphism on {𝑋, 𝑌 }^

2 → {𝑋′, 𝑌 }^
2.

As promised, let us compute the 2-component of 𝜋𝑠
∗. The first step involves the cal-

culation of Ext𝑠,𝑡
𝒜2

(ℤ2, ℤ2), where 𝑡 means the latter ℤ2 viewed as a graded module, has
the ℤ2 summand on the grading 𝑡. Homological algebra suggests us to do the deleted
projective resolution for the former ℤ2 or deleted injective resolution for the latter, both
viewed as graded modules with ℤ2 on the grading 0.

Generally, for computing Ext𝑠,𝑡
𝒜𝑝

(𝐻∗(𝑋), ℤ𝑝) it suffices to construct a minimal free
resolution of 𝐻∗(𝑋) over 𝒜𝑝:

⋯ → 𝐹2 → 𝐹1 → 𝐹0 → 𝐻∗(𝑋) → 0

where at each step of the inductive construction, the number of generators of 𝐹𝑖 chosen is
minimal.
Proposition 4.3: For a minimal resolution, all maps in dual complex

⋯ ← Hom𝒜𝑝(𝐹2, ℤ𝑝) ← Hom𝒜𝑝(𝐹1, ℤ𝑝) ← Hom𝒜𝑝(𝐹0, ℤ𝑝) ← 0

are zero, hence Ext𝑠,𝑡
𝒜𝑝

(𝐻∗(𝑋), ℤ𝑝) = Hom𝑡
𝒜𝑝

(𝐹𝑠, ℤ𝑝), t indicates the grading for ℤ𝑝.
Proof: Denote 𝒜+ for the ideal in 𝒜 generated by elements having degree nonzero.
Observe that ker𝜙𝑖 ∶ 𝐹𝑖 → 𝐹𝑖−1 ⊂ 𝒜+𝐹𝑖. Since if 𝑥 ∈ ker𝜙𝑖 and 𝑥 = ∑𝑗 𝑎𝑗𝑥𝑖𝑗 with
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𝑎𝑗 ∈ 𝒜 with some 𝑎𝑗 ∈ 𝒜0 = ℤ𝑝 nonzero, then we can solve the equation 0 = 𝜙𝑖(𝑥) =
∑𝑗 𝑎𝑗𝜙𝑖(𝑥𝑖𝑗) for 𝜙𝑖(𝑥𝑖𝑗), which against to the minimal construction on 𝐹𝑖.

Since𝜙𝑖−1𝜙𝑖 = 0, we have𝜙𝑖(𝑥) ∈ ker𝜙𝑖−1 for each 𝑥 ∈ 𝐹𝑖 with𝜙𝑖(𝑥) = ∑𝑗 𝑎𝑗𝑥𝑖−1,𝑗

with 𝑎𝑗 ∈ 𝒜+. Hence for each 𝑓 ∈ Hom𝒜(𝐹𝑖−1, ℤ𝑝) we have

𝜙∗
𝑖 𝑓(𝑥) = 𝑓𝜙𝑖(𝑥) = ∑

𝑗
𝑎𝑗𝑓(𝑥𝑖−1,𝑗) = 0

since 𝑎𝑗 ∈ 𝒜+ will send 𝑓(𝑥𝑖−1,𝑗) ∈ ℤ𝑝 to zero. ∎
Return to the calculation on 2-component of 𝜋𝑠

∗. Remind that we have already proved
𝜋𝑠

1 = 𝜋4(𝑆3) = ℤ2, since for 𝑛 > 𝑖 + 1 𝜋𝑠
𝑖 = 𝜋𝑛+𝑖(𝑆𝑛). The 𝐸2 page consists of terms

Hom𝑡
𝒜2

(𝐹𝑠, ℤ2) where 𝐹𝑠’s being the minimal free resolution of ℤ2 in the category of
graded 𝒜2-modules. Hence our task is to construct 𝐹𝑖’s as we need.

Begin with 𝐹0 → ℤ2. Then 𝐹0 must be a free 𝒜2 module generated by one generator
in degree 0 denoted by 𝜄 with 𝜄 ↦ 1 ∈ ℤ2. Hence 𝐹0 = 𝒜2𝜄, the first column of the table
below. This map sends everything to zero except 𝜄, thus the kernel is 𝒜+

2 .
Then we consider 𝐹1 → 𝐹0. Clearly, we need a 𝛼1 with degree 1, which maps to

𝑆𝑞1𝜄. Therefore, there is a 𝒜2𝛼1 ⊂ 𝐹1. Notice that 𝑆𝑞1𝛼1 will map to 𝑆𝑞1𝑆𝑞1𝜄 in 𝐹0,
which is zero. We have no choice but introducing a new generator 𝛼2 with degree 2 who
maps to 𝑆𝑞2𝜄.

It is convenient to let 𝑆𝑞𝐼 denote the composition 𝑆𝑞𝑖1𝑆𝑞𝑖2 ⋯. If no Adem relations
can be applied to 𝑆𝑞𝐼 , that is, 𝑖𝑗 ⩾ 2𝑖𝑗+1, then we say it admissible. By applying Adem
relations iteratively, we can write every monomial 𝑆𝑞𝐼 as a sum of admissible monomials
.

Since 𝛼1 maps to 𝑆𝑞1𝜄, it follows that 𝑆𝑞𝐼𝛼1 is sent to 𝑆𝑞𝐼𝑆𝑞1𝜄 for all admissible
I except those end with 1. In particular, 𝑆𝑞1𝛼1 maps to zero. And we need the 𝛼2 as
explained above. All generators we need in the second column are 𝛼2𝑛’s which are mapped
to 𝑆𝑞2𝑛 𝜄 since 𝑆𝑞2𝑛

can not be decomposed. Also notice that 𝐹𝑖 starts with a generator
with degree 𝑖 by induction, as one can see in the first two rows of the table below.

Subsequent columns are computed in this way. And by finding out all generators, we
can compute the 𝐸2 page. But this is unpractical, since one can never know whether he
can move to the next column. Instead, one can compute the generators of a whole row by
vanishing line theorem.

The calculation show that the portion of 𝐸2 page in mod 2 case is in the following
table 4.1. The horizontal coordinate stand for 𝑡 − 𝑠 and the vertical for 𝑠. Changing the
coordinates is convenient for investigating 𝜋𝑠

𝑛, for all its factor groups lying on the column
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Figure 4-1 Resolution for ℤ2
[5]

𝑡 − 𝑠 = 𝑛.
Mod 2 Adams spectral sequence for 𝜋𝑠

∗

t-s=n

s

0 1 2 3 4 5 6 7

0

1

2

3

4

5

The second step is to consider the differentials 𝑑2. In this coordinates change, differ-
entials 𝑑𝑟 has degree (−1, 𝑟). Hence all differentials are zero except for 𝑑1,2

2 starting from
(1, 2) to (0, 4) in this page. Hence are terms are stable except the term at (1, 2) position.
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But we already know that 𝜋𝑠
1 = 𝜋4(𝑆3) = ℤ2, the differential 𝑑1,2

𝑟 must be zero for all
𝑟 ⩾ 2. Then according to Serre spectral sequences, all stable homotopy groups 𝜋𝑠

𝑖 are
finite except for 𝑖 = 0, we conclude that the orders of (2) 𝜋𝑠

2 and (2) 𝜋𝑠
3 are 2 and 8 respec-

tively. As for (2) 𝜋𝑠
3, one still needs to determine the structure of this group with order 8.

Actually, (2) 𝜋𝑠
∗ is a graded ring. There is a fact states that (2) 𝜋𝑠

3 = ℤ8 using the graded
ring structure 𝜋𝑠

𝑖 × 𝜋𝑠
𝑗 → 𝜋𝑠

𝑖+𝑗 defined by compositions 𝑆 𝑖+𝑗+𝑘 → 𝑆𝑗+𝑘 → 𝑆𝑘. To clarify
this explicitly requires more work, thus not included.

Calculations usingAdams spectral sequence is really complicated due to the structure
of Steenrod algebra. In Appendix, I included some charts of Adams spectral sequences
in different prime 𝑝 made by Hood Chatham. Greenlees generalized this approach for
some other cohomology theory, Adams specral sequences yield some different informa-
tion about {𝑋, 𝑌 }, listing in the table below.

Table 4-1 Result of Greenlees

Cohomology theory Information

𝐻∗(⋅ ; ℤ2) {𝑋, 𝑌 }^
𝑝

𝐻∗(⋅ ; ℚ) {𝑋, 𝑌 } ⊗ ℚ
𝐻∗(⋅ ; ℤ) {𝑋, 𝑌 }

𝐾∗(⋅) A periodic form of {𝑋, 𝑌 }
𝑀𝑈 ∗(⋅) {𝑋, 𝑌 }

𝐾∗(⋅) stands for 𝐾-theory. The periodicity is an attenuated form of Bott periodicity
and mixes up {𝑆𝑘𝑋, 𝑌 } for various 𝑘. 𝑀𝑈 ∗(⋅) is the complex cobordism, which requires
a lot of hard work as preparation. When 𝑋, 𝑌 are both spheres, this method is the most
efficient known method for calculation at odd primes.

4.4 K-Theory and Adams Operations

4.4.1 K-Theory

K-theory is the first generalized cohomology theory, invented by Atiyah and Hirze-
bruch around 1960 [15], based on the Bott’s Periodicity Theorem [16]. The idea is to con-
sider all vector bundles over a space 𝑋 forming an abelian group, in fact ring structure.

If 𝐸1 and 𝐸2 are vector bundles over 𝐵, we say they are stably isomorphic if 𝐸1 ⊕
𝜖𝑛 ≅ 𝐸2 ⊕ 𝜖𝑛, denoted by 𝐸1 ∼𝑠 𝐸2, 𝜖𝑛 is the 𝑛−dimensional trivial bundle. This is an
equivalence relation. Under this relation, we can define the addition𝐸1+𝐸2 to be𝐸1⊕𝐸2,
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where 𝐸𝑖 representing the equivalent class of its own. It is associative, commutative, with
identity element 𝜖0. Bui int this setting, only 𝜖0 has its own as inverse. Hence we add the
formal inverse −𝐸 of 𝐸 for all 𝐸, and 𝐸1 − 𝐸′

1 = 𝐸2 − 𝐸′
2 if 𝐸1 + 𝐸′

2 ∼𝑠 𝐸2 + 𝐸′
1. Denote

this group by 𝐾(𝑋). Notice that any element in 𝐾(𝑋) can be written as 𝐸 − 𝐸′ and the
zero element is the class of 𝐸 − 𝐸 for all 𝐸. Further, 𝐸 − 𝐸′ = (𝐸 + 𝐸′⟂) − (𝐸′ + 𝐸′⟂) =
(𝐸 + 𝐸′⟂) − 𝜖𝑛. Therefore the elements in 𝐾(𝑋) can be written as 𝐸 − 𝜖𝑛.

Similarly, there is another equivalence relation. We say𝐸1 ∼ 𝐸2 if𝐸1⊕𝜖𝑚 ≅ 𝐸2⊕𝜖𝑛

for some 𝑚 and 𝑛. The set of all vector bundles over 𝑋 under this relation then forms
an abelian group automatically, since for any 𝐸, there is a vector bundle 𝐸⟂ such that
𝐸 ⊕ 𝐸⟂ ≅ 𝜖𝑛 for some 𝑛. Denote this group by ̃𝐾(𝑋).

There is a natural homomorphism from 𝐾(𝑋) to ̃𝐾(𝑋), namely sending the class of
𝐸 − 𝜖𝑛 to the class of 𝐸. The kernel of this morphism is the class of 𝐸 − 𝜖𝑛 with 𝐸 ≅ 𝜖𝑚

for some 𝑚, that is the subset {𝜖𝑚 − 𝜖𝑛} of 𝐾(𝑋). In fact, restricting of 𝐸 over 𝑋 to a base
point 𝑥0 gives a homomorphsim from 𝐾(𝑋) to 𝐾(𝑥0) which restricts on {𝜖𝑚 − 𝜖𝑛} is an
isomorphsim. Hence 𝐾(𝑋) splits as 𝐾(𝑋) = 𝐾(𝑥0) ⊕ ̃𝐾(𝑋) = ̃𝐾(𝑋) ⊕ ℤ.

We can also define multiplication over 𝐾(𝑋), which is

(𝐸1 − 𝐸′
1)(𝐸2 − 𝐸′

2) = 𝐸1 ⊗ 𝐸2 − 𝐸1 ⊗ 𝐸′
2 − 𝐸′

1 ⊗ 𝐸2 + 𝐸′
1 ⊗ 𝐸′

2.

Multiplication over 𝐾(𝑋) is associative, commutative, and satisfies distribution. Hence
𝐾(𝑋) is a commutative ring with identity elements 𝜖0.

𝐾(⋅) is a contravariant functor from the category of topological spaces to the category
of commutative rings, satisfying if 𝑓 ≃ 𝑔 ∶ 𝑋 → 𝑌 , then 𝑓 ∗ = 𝑔∗ ∶ 𝐾(𝑌 ) → 𝐾(𝑋).

̃𝐾(𝑋) identified with the kernel of 𝐾(𝑋) → 𝐾(𝑥0) is clearly an ideal of 𝐾(𝑋) and a ring
of its own.

Consider projections 𝑝𝑥 and 𝑝𝑦 from 𝑋 × 𝑌 to 𝑋 and 𝑌 . Applying the functor 𝐾(⋅),
we get a commutative diagram

𝐾(𝑋)
𝑝∗

𝑥

&&LL
LLL

LLL
LL

𝐾(𝑋) × 𝐾(𝑌 )

𝜋1
77ooooooooooo

𝜋2 ''OO
OOO

OOO
OOO

𝜇____ //____ 𝐾(𝑋 × 𝑌 )

𝐾(𝑌 )
𝑝∗

𝑦

88rrrrrrrrrr

𝜇 ∶ (𝑎, 𝑏) ↦ 𝑝∗
𝑥(𝑎)𝑝∗

𝑦(𝑏), which is bilinear. Therefore we get a morphism called cross

33



CHAPTER 4 COHOMOLOGY OPERATIONS

product or external product as in ordinary cohomology theory:

̃𝜇 ∶ 𝐾(𝑋) ⊗ 𝐾(𝑌 ) ⟶ 𝐾(𝑋 × 𝑌 )

𝑎 ⊗ 𝑏 ↦ 𝑎 ∗ 𝑏 = 𝑝∗
𝑥(𝑎)𝑝∗

𝑦(𝑏).

Let 𝑌 = 𝑆2, we have a map 𝐾(𝑆2) ⊗ 𝐾(𝑋) → 𝐾(𝑆2 × 𝑋). In 𝐾(𝑆2), let 𝐻 be the
complex line bundle over ℂℙ1 = 𝑆2, we have a relation (𝐻 ⊗ 𝐻) ⊕ 1 = 𝐻 ⊕ 𝐻 , that is
𝐻2 + 1 = 2𝐻 . Hence there is a map from the polynomial ring ℤ[𝐻]/(𝐻 − 1)2 → 𝐾(𝑆2),
which is an isomorphism in fact. And the cross product 𝐾(𝑆2) ⊗ 𝐾(𝑋) → 𝐾(𝑆2 × 𝑋) is
an isomorphism as well.
Theorem 4.3 (The Fundamental Product Theorem [17-18]): The homomorphism 𝜇 ∶
𝐾(𝑋) ⊗ ℤ[𝐻]/(𝐻 − 1)2 → 𝐾(𝑋) ⊗ 𝐾(𝑆2) → 𝐾(𝑋 × 𝑆2) is an isomorphism of rings
for all compact Hausdorff spaces 𝑋.

Taking 𝑋 as a point, one finds ̃𝐾(𝑆2) is generated by 𝐻 − 1, and multiplication in
̃𝐾(𝑆2) is trivial sicne (𝐻 − 1)2 = 0.

Now we can extend ̃𝐾(⋅) to a cohomology theory. Suppose we have 𝐴 ⊂ 𝑋 and

maps 𝐴
𝑖

↪ 𝑋 𝑗→ 𝑋/𝐴 between topological spaces. Applying the functor ̃𝐾(⋅) yields
̃𝐾(𝑋/𝐴) 𝑗∗

→ ̃𝐾(𝑋) 𝑖∗→ ̃𝐾(𝐴). It is clear that the image of 𝑗∗ contained in ker 𝑖∗. For
the opposite, suppose 𝐸 over 𝑋 is trivial when restricts on 𝐴. Choosing a trivialization
ℎ ∶ 𝑝−1(𝐴) → 𝐴 × ℂ𝑛. Construct 𝐸/ℎ as the quotient space of 𝐸 under the identifications
ℎ−1(𝑥, 𝑣) ∼ ℎ−1(𝑦, 𝑣) for 𝑥, 𝑦 ∈ 𝐴. Then 𝐸/ℎ is a vector bundle over 𝑋/𝐴 and 𝑗∗(𝐸/ℎ) =
𝐸 in ̃𝐾(𝑋).

For pair (𝑋, 𝐴), the cofibration sequence is

𝐴 ↪ 𝑋 ↪ 𝑋 ∪ 𝐶𝐴 ↪ (𝑋 ∪ 𝐶𝐴) ∪ 𝐶𝑋 ↪ ((𝑋 ∪ 𝐶𝐴) ∪ 𝐶𝑋) ∪ 𝐶(𝑋 ∪ 𝐶𝐴) ↪,

By collapsing contractible subspaces, the above sequence can be written as

𝐴 ↪ 𝑋 ↪ 𝑋/𝐴 ↪ 𝑆𝐴 ↪ 𝑆𝑋 ↪ 𝑆(𝑋/𝐴) ↪ ⋯

Wehave shown that ̃𝐾(⋅) is exact on cofibration sequence, hence there is an exact sequence,

⋯ → ̃𝐾(𝑆𝑋) → ̃𝐾(𝑆𝐴) → ̃𝐾(𝑋/𝐴) → ̃𝐾(𝑋) → ̃𝐾(𝐴).

If 𝑋 = 𝐴 ∨ 𝐵, then 𝑋/𝐴 = 𝐵 and the sequence splits, ̃𝐾(𝑋) = ̃𝐾(𝐴) ⊕ ̃𝐾(𝐵) since the
last map is restriction on 𝐴 which is surjective.

As cross product in 𝐾(⋅), we can define the corresponding cross product in ̃𝐾(⋅). For
𝑎 ∈ ̃𝐾(𝑋) = ker(𝐾(𝑋) → 𝐾(𝑥0) and 𝑏 ∈ ̃𝐾(𝑌 ) = ker(𝐾(𝑌 ) → 𝐾(𝑦0)), then external
product 𝑎 ∗ 𝑏 = 𝑝∗

1(𝑎)𝑝∗
2(𝑏) ∈ 𝐾(𝑋 × 𝑌 ) has 𝑝∗

1(𝑎) restricting zero in 𝐾(𝑌 ) and 𝑝∗
2(𝑏)
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restricting zero in 𝐾(𝑋). So 𝑝∗
1(𝑎)𝑝∗

2(𝑏) restricts to zero in both 𝐾(𝑋) and 𝐾(𝑌 ), hence
on𝐾(𝑋∨𝑌 ). This defines the reduced cross product ̃𝐾(𝑋)⊗ ̃𝐾(𝑌 ) → ̃𝐾(𝑋×𝑌 , 𝑋∨𝑌 ) =

̃𝐾(𝑋 ∧ 𝑌 ).
Since 𝑆𝑛 ∧ 𝑋 = 𝛴𝑛𝑋 which is homotopic equivalent to 𝑆𝑛𝑋. Taking 𝑌 = 𝑆2, we

have a map:

𝛽 ∶ ̃𝐾(𝑋) → ̃𝐾(𝑆2𝑋), 𝛽(𝑎) = (𝐻 − 1) ∗ 𝑎

where 𝐻 is the canonical line bundle over 𝑆2 = ℂℙ1.
Theorem 4.4 (Bott Periodicity Theorem [18]): The homomorphism 𝛽 ∶ ̃𝐾(𝑋) →

̃𝐾(𝑆2𝑋), 𝛽(𝑎) = (𝐻 − 1) ∗ 𝑎 is an isomorphsim for all compact Hausdorff spaces 𝑋.
Proof: The external product on ̃𝐾(⋅) is actually the restriction of external product in𝐾(⋅)
on ̃𝐾(⋅). Since the fundamental product theorem is an isomorphism, the consequence
follow. ∎

Hence by Bott Periodicity Theorem, ̃𝐾(𝑆2𝑛+1) = ̃𝐾(𝑆1) = 0; ̃𝐾(𝑆2𝑛) = ℤ, the
generator is (𝐻 − 1) ∗ ⋯ ∗ (𝐻 − 1). The first statement comes from all complex bundles
over 𝑆1 are trivial.

If we set ̃𝐾−𝑛(𝑋) = ̃𝐾(𝑆𝑛𝑋) and ̃𝐾−𝑛(𝑋, 𝐴) = ̃𝐾(𝑆𝑛(𝑋/𝐴)), the sequence above
can be rewritten into:

̃𝐾−2(𝑋) → ̃𝐾−2(𝐴) → ̃𝐾−1(𝑋, 𝐴) → ̃𝐾−1(𝑋) → ̃𝐾−1(𝐴) → ̃𝐾0(𝑋, 𝐴) → ̃𝐾0(𝑋) → ̃𝐾0(𝐴)

Define ̃𝐾2𝑖(𝑋) = ̃𝐾(𝑋) and ̃𝐾2𝑖+1(𝑋) = ̃𝐾(𝑆𝑋) for 𝑖 ⩾ 0. The long exact sequence can
summarized as following periodic diagram.

̃𝐾0(𝑋, 𝐴) // ̃𝐾0(𝑋) // ̃𝐾0(𝐴)

��
̃𝐾1(𝐴)

OO

̃𝐾1(𝑋)oo ̃𝐾1(𝑋, 𝐴)oo

A product ̃𝐾 𝑖(𝑋)⊗ ̃𝐾𝑗(𝑌 ) → ̃𝐾 𝑖+𝑗(𝑋 ∧𝑌 ) can be defined as previous in the obvious
way. Let ̃𝐾∗(𝑋) = ̃𝐾0(𝑋) ⊕ ̃𝐾1(𝑋), then this gives a product ̃𝐾∗(𝑋) ⊗ ̃𝐾∗(𝑌 ) →

̃𝐾∗(𝑋 ∧ 𝑌 ). The relative form of this is a product ̃𝐾∗(𝑋, 𝐴) ⊗ ̃𝐾∗(𝑌 , 𝐵) → ̃𝐾∗(𝑋 ×
𝑌 , 𝑋 × 𝐵 ∪ 𝐴 × 𝑌 ).

If we compose the external product ̃𝐾∗(𝑋)⊗ ̃𝐾∗(𝑋) → ̃𝐾∗(𝑋∧𝑋)with the diagonal
map 𝑋 → 𝑋 × 𝑋, then we have a multiplication on ̃𝐾∗(𝑋) making it into a ring, and
extending the previously ring structure on ̃𝐾0(𝑋).
Proposition 4.4: The multiplication is graded commutative, 𝛼𝛽 = (−1)𝑖𝑗𝛽𝛼 for 𝛼 ∈

̃𝐾 𝑖(𝑋) and 𝛽 ∈ ̃𝐾𝑗(𝑋).
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4.4.2 Adams Operations and Division Algebras

In this section, we will use Adams operations to prove the celebrating theorem of
Adams which asserts that:

Theorem 4.5: [19] There exists a map 𝑓 ∶ 𝑆4𝑛−1 → 𝑆2𝑛 of Hopf invariant ±1 only
when 𝑛 = 1, 2, 4.

This theorem has famous applications, for instance, ℝ𝑛 is a division algebra and𝑆𝑛−1

is parallelizable only for 𝑛 = 1, 2, 4, 8. Of course, we can deduce that ℝ𝑛 has a division
algebra structure only when 𝑛 is a power of 2. But using 𝐾-theory, the conclusion is more
powerful. Starting with the definition of H-space.

In our case, an H-space structure on 𝑆𝑛−1 is a continuous map 𝑆𝑛−1 × 𝑆𝑛−1 → 𝑆𝑛−1

which has identity element 𝑒 ∈ 𝑆𝑛−1. We do not assume the existence of inverses and
associativity of the multiplication.
Proposition 4.5: If ℝ𝑛 is a division algebra, then 𝑆𝑛−1 is an H-space.
Proof: This is because if we have a division algebra structure, then we can define the
H-space structure on 𝑆𝑛−1 by (𝑥, 𝑦) ↦ 𝑥𝑦/|𝑥𝑦|. ∎

Since we have the isomorphism ̃𝐾(𝑆2𝑘)⊗ ̃𝐾(𝑋) → ̃𝐾(𝑆2𝑘∧𝑋), the external product
on 𝐾(𝑆2𝑘)⊗𝐾(𝑋) → 𝐾(𝑆2𝑘 ×𝑋) is also an isomorphism. And 𝐾(𝑆2𝑘) can be described
as ℤ[𝛼]/(𝛼2), we can deduce that 𝐾(𝑆2𝑘 × 𝑆2𝑙) is ℤ[𝛼, 𝛽]/(𝛼2, 𝛽2). An additive basis for
𝐾(𝑆2𝑘 × 𝑆2𝑙) is {1, 𝛼, 𝛽, 𝛼𝛽}.

We can from this deduce that 𝑆2𝑘 is not an H-space for 𝑘 > 0. Suppose 𝜇 ∶ 𝑆2𝑘 ×
𝑆2𝑘 → 𝑆2𝑘 is an H-space multiplication. It induces homomorphism 𝜇∗ ∶ ℤ[𝛾]/(𝛾2) →
ℤ[𝛼, 𝛽]/(𝛼2, 𝛽2). The composition 𝑆2𝑘 𝑖

↪ 𝑆2𝑘 × 𝑆2𝑘 𝜇→ 𝑆2𝑘 is the identity, where 𝑖 is the
inclusion onto either of the subspaces 𝑆2𝑘 × {𝑒} or {𝑒} × 𝑆2𝑘. The map 𝑖∗ induced by
inclusion into the first factor sends 𝛼 to 𝛾 and 𝛽 to 0, hence the coefficient of 𝛼 in 𝜇∗(𝛾)must
be 1, similarly, coefficient for 𝛽 is 1 and no constant term. Therefore 𝜇∗(𝛾) = 𝛼 + 𝛽 + 𝑡𝛼𝛽.
Now using 𝐾(𝑆2𝑘) has trivial ring structure and 𝜇∗ is a ring homomorphism,

0 = 𝜇∗(𝛾2) = (𝛼 + 𝛽 + 𝑡𝛼𝛽)2 = 2𝛼𝛽 ≠ 0,

a contradiction. Hence ℝ𝑛 may have a division algebra structure only when 𝑛 is even.
It remains to show that 𝑆𝑛−1 is not a H-space when 𝑛 is even and different from 2,4,8.

This needs the concept of Hopf invariant.
If 𝑔 ∶ 𝑆𝑛−1 × 𝑆𝑛−1 → 𝑆𝑛−1 is a map, we can associate a map ̂𝑔 ∶ 𝑆2𝑛−1 → 𝑆𝑛,

defined as follow. Regard 𝑆2𝑛−1 as ∂(𝐷𝑛 × 𝐷𝑛) = ∂𝐷𝑛 × 𝐷𝑛 ∪ 𝐷𝑛 × ∂𝐷𝑛, and 𝑆𝑛 the union
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of 𝐷𝑛
+ and 𝐷𝑛

−. Then ̂𝑔 is defined on ∂𝐷𝑛 × 𝐷𝑛 by ̂𝑔(𝑥, 𝑦) = |𝑦|𝑔(𝑥, 𝑦/|𝑦|) ∈ 𝐷𝑛
+ and on

𝐷𝑛 × ∂𝐷𝑛 by ̂𝑔(𝑥, 𝑦) = |𝑥|𝑔(𝑥/|𝑥|, 𝑦) ∈ 𝐷𝑛
−. ̂𝑔 agrees with 𝑔 on 𝑆𝑛−1 × 𝑆𝑛−1.

Now focus on 𝑛 is even, so replace 𝑛 by 2𝑛. For a map 𝑓 ∶ 𝑆4𝑛−1 → 𝑆2𝑛, let 𝐶𝑓 be
𝑆2𝑛 with a cell 𝑒4𝑛 attached by 𝑓 , thus 𝐶𝑓 /𝑆2𝑛 is 𝑆4𝑛. There is a short exact sequence

0 → ̃𝐾(𝑆4𝑛) → ̃𝐾(𝐶𝑓 ) → ̃𝐾(𝑆2𝑛) → 0.

Let 𝛼 ∈ ̃𝐾(𝐶𝑓 ) be the image of the generator of ̃𝐾(𝑆4𝑛) and 𝛽 ∈ ̃𝐾(𝐶𝑓 ) map to the
generator of ̃𝐾(𝑆2𝑛). It follows from 𝛽2 maps to 0, hence 𝛽2 = ℎ𝛼. The Hopf invariant
of 𝑓 is defined to be the integer ℎ.
Proposition 4.6: If 𝑔 is an H-space multiplication on 𝑆2𝑛−1, then the associated map

̂𝑔 ∶ 𝑆4𝑛−1 → 𝑆2𝑛 has Hopf invariant ±1.
The result then follows from the Adams Hopf invariant one theorem stated at the

beginning.
To show the theorem of Adams, we need more structure on 𝐾(𝑋). Just as Steenrod

operations on cohomology rings, we have Adams operations on the 𝐾 rings.

Theorem 4.6: [20] There are ring morphisms 𝛹 𝑘 ∶ 𝐾(𝑋) → 𝐾(𝑋), for any 𝑘 ⩾ 0
satisfying:

1. 𝛹 𝑘𝑓 ∗ = 𝑓 ∗𝛹 𝑘 for all maps 𝑓 ∶ 𝑋 → 𝑌 .
2. 𝛹 𝑘(𝐿) = 𝐿𝑘 if 𝐿 is a line bundle.
3. 𝛹 𝑘 ∘ 𝛹 𝑙 = 𝛹 𝑘𝑙.
4. 𝛹 𝑝(𝛼) = 𝛼𝑝 mod 𝑝 for 𝑝 prime.

𝑋 need to be compact Hausdorff spaces.
As Steenrod operations, we do not need the explicit construction of Adams operations

at most time. Their properties can help us a lot. For example, 𝛹 𝑘 ∶ ̃𝐾(𝑆2𝑛) → ̃𝐾(𝑆2𝑛)
must be a multiplication by an integer for ̃𝐾(𝑆2𝑛) = ℤ. In the case 𝑛 = 1, let 𝛼 = 𝐻 − 1
be the generator of ̃𝐾(𝑆2𝑛). Then

𝛹 𝑘(𝛼) = 𝛹 𝑘(𝐻 − 1) = 𝐻𝑘 − 1

= (1 + 𝛼)𝑘 − 1

= 1 + 𝑘𝛼 − 1

= 𝑘𝛼

And hence 𝛹 𝑘 ∶ ̃𝐾(𝑆2𝑛) → ̃𝐾(𝑆2𝑛) is multiplication by 𝑘𝑛 by induction.
Finally, we can start to prove the Adams theorem on Hopf invariant. Recall that 𝛼 ∈

̃𝐾(𝐶𝑓 ) is the image of the generator of ̃𝐾(𝑆4𝑛) and 𝛽 ∈ ̃𝐾(𝐶𝑓 ) mapped to the generator
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of ̃𝐾(𝑆2𝑛) with the relation 𝛽2 = ±𝛼. Now 𝛹 𝑘(𝛼) = 𝑘2𝑛𝛼 and 𝛹 𝑘(𝛽) = 𝑘𝑛𝛽 + 𝜇𝑘𝛼 for
some 𝜇𝑘 ∈ ℤ. Therefore

𝛹 𝑘𝛹 𝑙(𝛽) = 𝛹 𝑘(𝑙𝑛𝛽 + 𝜇𝑙𝛼) = 𝑘𝑛𝑙𝑛𝛽 + (𝑘2𝑛𝜇𝑙 + 𝑙𝑛𝜇𝑘)𝛼.

Since 𝛹 𝑘𝛹 𝑙 = 𝛹 𝑘𝑙 = 𝛹 𝑙𝛹 𝑘, we must have the relation

𝑘2𝑛𝜇𝑙 + 𝑙𝑛𝜇𝑘 = 𝑙2𝑛𝜇𝑘 + 𝑘𝑛𝜇𝑙

or equivalently,

(𝑘2𝑛 − 𝑘𝑛)𝜇𝑙 = (𝑙2𝑛 − 𝑙𝑛)𝜇𝑘.

By letting 𝑘 = 2, we have 𝛹 2(𝛽) = 𝛽2 mod 2. Since 𝛽2 = ℎ𝛼 with ℎ = ±1 the Hopf
invariant, the formula 𝛹 2(𝛽) = 2𝑛𝛽 + 𝜇2𝛼 implies 𝜇2 = ℎ mod 2, so 𝜇2 must be odd. By
letting 𝑘 = 3, we have 2𝑛(2𝑛 − 1)𝜇3 = 3𝑛(3𝑛 − 1)𝜇2. Hence 2𝑛 divides 3𝑛 − 1 for 3𝑛 and 𝜇2

both odd. But 2𝑛 divides 3𝑛 − 1 only holds for 𝑛 = 1, 2, 4 by elementary number theory
fact.

Therefore ℝ𝑛 has division algebra structure only for 𝑛 = 1, 2, 4, 8 corresponding to
ℝ, ℂ, ℍ and𝕆. The first two have indentities and the last one dose not satisfy associativity.
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CONCLUSION

Computing stable homotopy groups is a corework in algebraic topology. And nowwe
can at least tell something about stablemaps {𝑋, 𝑌 } between𝑋 and 𝑌 , that is, {𝑋, 𝑌 }with
its 𝑝−component. Though we have powerful tools such as, Adams spectral sequences, the
complicated and tedious work often makes one confusing. To avoid or at least ensure
the method is effective, we need to analyze our problem as further as possible, instead of
throwing all stuff into the machinery. The spectral sequences method can also be used in
some new cohomology theory, such as topological modular forms, which is one aspect in
my Ph.D. study. In spite of this, cohomology operations show its own strength by deducing
an upper bound of the number of independent vector fields over 𝑆𝑛−1 is 2𝑟 − 1 when
𝑛 = 2𝑟(2𝑠 + 1) and proving that there is no space with polynomial ring as its cohomology
ring exceptℂℙ∞ andℍℙ∞. The last two section show the power of K-theory, a generalized
cohomology theory through the classical result on Hopf invariant one and division algebra
structures over ℝ, which indicates that new homology or cohomology theories is needed.
This master degree thesis emphasizes the absurdity of ignoring the calculational aspect of
theories and methods aiming to the philosophy of algebraic topology.
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A.1 Mod 2 Adams spectral sequence

Figure A-1 Mod 2 Adams spectral sequence for 𝜋𝑠
∗
[5]

This figure from [5] shows the 2-component of 𝜋𝑠
𝑛 up to 𝑛 ⩽ 20. The structure lines

displayed in this figure mean there are product structures between them.

A.2 Calculation on mod 2 Steenrod Algebra

Recall that if 𝑎 < 2𝑏, then

𝑆𝑞𝑎𝑆𝑞𝑏 = ∑
𝑗⩾0 (

𝑏 − 𝑗 − 1
𝑎 − 2𝑗 )𝑆𝑞𝑎+𝑏−𝑗𝑆𝑞𝑗 .

Applying this, when 𝑎 = 1, one obtains that 𝑆𝑞1𝑆𝑞𝑏 = (𝑏 − 1)𝑆𝑞𝑏+1. Hence
𝑆𝑞1𝑆𝑞2𝑛 = 𝑆𝑞2𝑛+1 and 𝑆𝑞1𝑆𝑞2𝑛−1 = 0.

This applies to 𝑆𝑞1𝛼2 = 𝑆𝑞1𝑆𝑞2𝜄 = 𝑆𝑞3𝜄, 𝑆𝑞1𝛽4 = 𝑆𝑞1(𝑆𝑞3𝛼1 + 𝑆𝑞2𝛼2) =
𝑆𝑞1𝑆𝑞2𝛼2 = 𝑆𝑞3𝛼2, and calculates all relation in the table established in section 4.3.
And there are more things we can compute.

In the second column, 𝑆𝑞2,1𝛼2 maps to 𝑆𝑞2𝑆𝑞1𝑆𝑞2𝜄 = 𝑆𝑞2𝑆𝑞3𝜄 = 𝑆𝑞5 + 𝑆𝑞4𝑆𝑞1

and 𝑆𝑞1𝛼4 maps to 𝑆𝑞1𝑆𝑞4𝜄 = 𝑆𝑞5 by identities above.
When 𝑎 = 2, 𝑆𝑞2𝑆𝑞𝑏 = (𝑛−1

2 )𝑆𝑞𝑛+2+𝑆𝑞𝑛+1𝑆𝑞1. This can help in computing𝑆𝑞2𝛼4

maps to (3
2)𝑆𝑞6 + 𝑆𝑞5𝑆𝑞1 as shown in the figure.
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Figure A-2 Resolution for ℤ2 as 𝒜-module [5]
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